Effect of enzymatic reactions on color of fruits and vegetables 35 wall preparation that had the capacity to generate H2O2 (Wasserman and Guilfoy, 1983). It was concluded that the reaction proceeded via a peroxi- datic mechanism. Both membrane-bound and cell wall-bound POD were identified in red beet (Wasserman and Guilfoy, 1984), and it was found that betanin was enzymatically decolorized at a greater rate than betaxan- thin pigments in the presence of phenolic compounds (Wasserman et al., 1984). The betaxanthins were, however, more prone to chemical oxidation by H2O2. PPO has been found in a latent state in beetroot (Escribano et al., 2002) though it can apparently be activated as a result of steam-peeling beet- roots, leading to a “black-ring” discoloration (Im et al., 1990). 2.3.3â•… Carotenoid degradation Carotenoid pigments in fruits and vegetables are generally relatively stable although potentially they can be degraded to yellow-orange and colorless products in a coupled oxidation with polyunsaturated fatty acids catalyzed by Type 2 lipoxygenases. However, the evidence for such reac- tions is based largely on studies with purified enzymes and pigments. Lipoxygenase activity, if present, can be inhibited by phenolic compounds with flavans having a stronger inhibitory effect on the enzyme than fla- vonols followed by ferulic and p-coumaric acids (Oszmianski and Lee, 1990). Carotenoid degradation has also been linked with PPO activity, the lycopene in tomato apparently being oxidized by quinones formed in the enzymatic reaction (Spagna et al., 2005). 2.3.4â•… Chlorophyll degradation Chlorophylls can be degraded into green, olive-brown, and colorless products. The green compounds still contain the central magnesium (or the magnesium has been replaced by another metal such as zinc or cop- per), the olive-brown products have lost the metal ion, and the colorless products contain open tetrapyrrole rings. Although the fine details are not fully comprehended, the main enzymatic steps in the pathway of chlorophyll catabolism in green tissue undergoing true senescence are known to involve chlorophyllase, reductases, magnesium-dechelatase (although magnesium removal is possibly caused by a non-enzymatic fac- tor), pheophorbide a oxygenase and red chlorophyll catabolite reductase (Figure€2.5). Loss of chlorophyll by reactions that lie outside this physio- logical pathway has been termed pseudosenescent behavior (Ougham et al, 2008). In practice, it is difficult to distinguish between true and pseudo- senescence and both may co-occur in fruits and vegetables. The post-har- vest rate of chlorophyll degradation varies considerably from species to 94335.indb 35 3/31/10 4:30:10 PM © 2010 Taylor and Francis Group, LLC50. 36 J. Brian Adams species, the rate being enhanced under conditions that lead to ethylene formation and lowered by oxidative defense mechanisms such as endog- enous ascorbate. 2.3.4.1â•… Broccoli yellowing Yellowing of raw broccoli florets can occur rapidly on storage in air at 15–20°C due to chlorophyll degradation. In green vegetables, it has been proposed that POD utilizes H2O2 to catalyze oxidation of phenolic com- pounds to phenoxy radicals that then oxidize the chlorophyll and its derivatives to colorless low molecular weight compounds through the for- mation of 132-hydroxychlorophyll a, a fluorescent chlorophyll catabolite and a bilirubin-like intermediate (Yamauchi et al., 2004). In addition to the phenoxy radical, superoxide anion, formed in the POD-catalyzed reaction, may be involved in chlorophyll oxidation. External application of ethylene to broccoli has been shown to accelerate chlorophyll degradation, puta- tively via chlorophyllase, Mg dechelatase, and POD activities, whereas a cytokinin-related compound reduced the rate of chlorophyll breakdown (Costa et al., 2005). Mild heat treatment at 50°C of broccoli has been found Chlorophyll a Chlorophyllide a chlorophyllase magnesium dechelatase ? Pheophorbide a pheophorbide a oxygenase Red chlorophyll catabolite (RCC) RCC reductase Primary fluorescent chlorophyll catabolite Chlorophyll b chlorophyllase Chlorophyllide b Pyropheophorbide a pheophorbidase ? Non-fluorescent chlorophyll catabolites reductases reductases Figure 2.5╇ Chlorophyll degradation during senescence of green tissue (adapted from Ougham et al., 2008). 94335.indb 36 3/31/10 4:30:11 PM © 2010 Taylor and Francis Group, LLC
đang được dịch, vui lòng đợi..