A high-frequency resolution is small subbands in the lower frequency region, whereas a lower resolution in the higher frequency region with wide sub-bands should be the basis for an adequate calculation of the masked thresholds in the frequency domain. This would lead to a tree structure of the filterbank. The polyphase filter network used for the subband filtering has a parallel structure, which does not provide subbands of different widths. Nevertheless, one major advantage of the filterbank is given by adapting the audio blocks optimally to the requirements of the temporal masking effects and inaudible preechoes. A second major advantage is the small delay and complexity. To compensate for the lack of accuracy of the spectrum analysis of the filterbank, a 1024-point FFT for Layer II is used in parallel with the process of filtering the audio signal into 32 sub-bands.The prototype QMF filter is of order 511, optimised in terms of spectral resolution and rejection of sidelobes, which is better than 96 dB. This rejection is necessary for a sufficient cancellation of aliasing distortions. This filterbank provides a reasonable trade off between temporal behaviour on one side and spectral accuracy on the other side. A time/frequency mapping providing a high number of sub-bands facilitates the bit rate reduction, due to the fact that the human ear perceives the audio information in the spectral domain with a resolution corresponding to the critical bands of the ear, or even lower. These critical bands have a width of about 100 Hz in the low-frequency region, that is below 500 Hz, and a width of about 20% of the centre frequency at higher frequencies.The requirement of having a good spectral resolution is unfortunately contradict- ory to the necessity of keeping the transient impulse response, the so called pre and postecho, within certain limits in terms of temporal position and amplitude com- pared to the attack of a percussive sound. Knowledge of the temporal masking behaviour [Fastl, 1977] gives an indication of the necessary temporal position and amplitude of the pre-echo generated by a time/frequency mapping in such a way that this pre-echo, which normally is much more critical compared to the post-echo, is masked by the original attack. In association with the dual synthesis filterbank located in the decoder, this filter technique provides a global transfer function optimised in terms of perfect impulse response perception.
đang được dịch, vui lòng đợi..
