List of Figures xiiList of Tables xix1 Introduction 21.1 With Wind, Li dịch - List of Figures xiiList of Tables xix1 Introduction 21.1 With Wind, Li Việt làm thế nào để nói

List of Figures xiiList of Tables x

List of Figures xii
List of Tables xix
1 Introduction 2
1.1 With Wind, Life Gets Better . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Just a Tower? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Small Wind Turbine (SWT) System . . . . . . . . . . . . . . . . . . . 5
1.4 Cal Poly’s Small Wind Turbine Project . . . . . . . . . . . . . . . . . 7
1.4.1 Cal Poly’s Small Wind Turbine (SWT) System Overview . . . 7
1.4.2 Project Status . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Scope of This Thesis Project . . . . . . . . . . . . . . . . . . . . . . . 12
2 Design of Wind Turbine Tower 13
2.1 Type of Wind Turbine Towers . . . . . . . . . . . . . . . . . . . . . . 14
vi
2.1.1 Free-standing or Guy-wired . . . . . . . . . . . . . . . . . . . 14
2.1.2 Lattice Tower . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Tubular Tower . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 Hybrid Tower . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.5 Tower Design Trend . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Materials for Wind Turbine Tower . . . . . . . . . . . . . . . . . . . . 17
2.3 Height of Wind Turbine Tower . . . . . . . . . . . . . . . . . . . . . . 17
3 Cal Poly’s Small Wind Turbine (SWT) Tower 19
3.1 Wind Turbine Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.1 Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Soil and Wind Characteristics of Site . . . . . . . . . . . . . . 20
3.2 Design Features of Cal Poly’s Wind Turbine Tower . . . . . . . . . . 21
3.3 Installation Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 Wind Turbine Design Load 28
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 DNV/RISO and IEC Guidelines for Load Determination . . . . . . . 30
4.2.1 Load Cases and Load Types . . . . . . . . . . . . . . . . . . . 30
4.2.2 Methods for Determining Design Loads . . . . . . . . . . . . . 32
vii
4.2.3 Using Aeroelastic Method for Load Calculation . . . . . . . . 33
4.2.4 Using Simplified Load Equations for Load Calculation . . . . . 35
4.2.5 Determining Loads From Measurements . . . . . . . . . . . . 41
4.3 Wind Loads Given by Cal Poly . . . . . . . . . . . . . . . . . . . . . 41
4.3.1 Cal Poly’s Load Case for Tower Design . . . . . . . . . . . . . 41
4.3.2 Calculation of Maximum Thrust . . . . . . . . . . . . . . . . . 42
4.4 Comparison and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 43
5 Wind Turbine Tower Modeling for Finite Element Analysis 48
5.1 Finite Element Analyses Overview . . . . . . . . . . . . . . . . . . . . 48
5.2 Finite Element Model of Wind Turbine Tower . . . . . . . . . . . . . 49
5.3 Modeling Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Modeling Space and Coordinate System . . . . . . . . . . . . . . . . 51
5.5 Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.1 Beam Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.2 Using Beam Elements . . . . . . . . . . . . . . . . . . . . . . 55
5.5.3 Shell Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5.4 Using Shell Elements . . . . . . . . . . . . . . . . . . . . . . . 58
5.5.5 Using Mass and Rotary Inertia Elements . . . . . . . . . . . . 58
viii
5.6 Joining the Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.6.1 Multi Point Constraint (MPC) - Tie . . . . . . . . . . . . . . 60
5.6.2 Multi Point Constraint (MPC) - Beam . . . . . . . . . . . . . 61
5.6.3 Multi Point Constraint (MPC) - Hinge . . . . . . . . . . . . . 63
5.7 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.8 Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6 Static Analyses of Wind Turbine Tower 68
6.1 Load Case: Installation (Tilt-up) . . . . . . . . . . . . . . . . . . . . 68
6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2 Load Case: Maximum Thrust and Gravity . . . . . . . . . . . . . . . 74
6.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.2 Results for Thrust Load Applied to x-Direction . . . . . . . . 75
6.2.3 Results for Thrust Load Applied to y-Direction . . . . . . . . 79
6.3 Conclusion and Design Loads for Tower Components . . . . . . . . . 83
7 Dynamic Analyses of Wind Turbine Tower 86
7.1 Natural Frequency Extraction . . . . . . . . . . . . . . . . . . . . . . 86
ix
7.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.1.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8 Dynamic Analysis: Seismic Analysis 95
8.1 Evaulating Seismic Risks . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2 Transient Response (Time-history) Analysis . . . . . . . . . . . . . . 98
8.2.1 Direct Integration Vs. Modal Superposition Method . . . . . . 98
8.2.2 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.2.3 About Damping . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.3 Response Spectrum Analysis . . . . . . . . . . . . . . . . . . . . . . . 108
8.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.3.2 How Does It Work ? . . . . . . . . . . . . . . . . . . . . . . . 109
8.3.3 Response Spectrum as Input Force . . . . . . . . . . . . . . . 111
8.4 Results of Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.4.1 Result of Response Spectrum Analysis . . . . . . . . . . . . . 114
8.4.2 Result of Transient Modal Dynamic Analysis . . . . . . . . . . 119
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
0/5000
Từ: -
Sang: -
Kết quả (Việt) 1: [Sao chép]
Sao chép!
Danh sách nhân vật xiiDanh sách bảng xix1 giới thiệu 22.1 với gió, cuộc sống trở nên tốt hơn...................... . 21.2 chỉ một tháp? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 nhỏ Wind Turbine (SWT) hệ thống................... 51.4 Cal Poly dự án tua-bin gió nhỏ................. 71.4.1 Cal Poly nhỏ Wind Turbine (SWT) hệ thống tổng quan... 71.4.2 dự án tình trạng........................... 111.5 phạm vi của dự án luận án này...................... . 122 thiết kế của Wind Turbine Tower 132.1 loại tháp tua bin gió...................... 14vi2.1.1 Việt-đứng hoặc dây Guy................... 142.1.2 lưới tháp........................... 152.1.3 hình ống tháp.......................... 152.1.4 Hybrid Tower . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.1.5 xu hướng thiết kế tháp...................... . 162.2 tài liệu cho tua bin gió tháp........ 172.3 chiều cao của tháp tua bin gió...................... 173 Cal Poly nhỏ Wind Turbine (SWT) tháp 193.1 wind Turbine trang web............................ 193.1.1 Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.1.2 Soil and Wind Characteristics of Site . . . . . . . . . . . . . . 203.2 Design Features of Cal Poly’s Wind Turbine Tower . . . . . . . . . . 213.3 Installation Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 Wind Turbine Design Load 284.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284.2 DNV/RISO and IEC Guidelines for Load Determination . . . . . . . 304.2.1 Load Cases and Load Types . . . . . . . . . . . . . . . . . . . 304.2.2 Methods for Determining Design Loads . . . . . . . . . . . . . 32vii4.2.3 Using Aeroelastic Method for Load Calculation . . . . . . . . 334.2.4 Using Simplified Load Equations for Load Calculation . . . . . 354.2.5 Determining Loads From Measurements . . . . . . . . . . . . 414.3 Wind Loads Given by Cal Poly . . . . . . . . . . . . . . . . . . . . . 414.3.1 Cal Poly’s Load Case for Tower Design . . . . . . . . . . . . . 414.3.2 Calculation of Maximum Thrust . . . . . . . . . . . . . . . . . 424.4 Comparison and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 435 Wind Turbine Tower Modeling for Finite Element Analysis 485.1 Finite Element Analyses Overview . . . . . . . . . . . . . . . . . . . . 485.2 Finite Element Model of Wind Turbine Tower . . . . . . . . . . . . . 495.3 Modeling Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 515.4 Modeling Space and Coordinate System . . . . . . . . . . . . . . . . 515.5 Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.1 Beam Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.2 Using Beam Elements . . . . . . . . . . . . . . . . . . . . . . 55
5.5.3 Shell Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5.4 Using Shell Elements . . . . . . . . . . . . . . . . . . . . . . . 58
5.5.5 Using Mass and Rotary Inertia Elements . . . . . . . . . . . . 58
viii
5.6 Joining the Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.6.1 Multi Point Constraint (MPC) - Tie . . . . . . . . . . . . . . 60
5.6.2 Multi Point Constraint (MPC) - Beam . . . . . . . . . . . . . 61
5.6.3 Multi Point Constraint (MPC) - Hinge . . . . . . . . . . . . . 63
5.7 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.8 Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6 Static Analyses of Wind Turbine Tower 68
6.1 Load Case: Installation (Tilt-up) . . . . . . . . . . . . . . . . . . . . 68
6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2 Load Case: Maximum Thrust and Gravity . . . . . . . . . . . . . . . 74
6.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.2 Results for Thrust Load Applied to x-Direction . . . . . . . . 75
6.2.3 Results for Thrust Load Applied to y-Direction . . . . . . . . 79
6.3 Conclusion and Design Loads for Tower Components . . . . . . . . . 83
7 Dynamic Analyses of Wind Turbine Tower 86
7.1 Natural Frequency Extraction . . . . . . . . . . . . . . . . . . . . . . 86
ix
7.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.1.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8 Dynamic Analysis: Seismic Analysis 95
8.1 Evaulating Seismic Risks . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2 Transient Response (Time-history) Analysis . . . . . . . . . . . . . . 98
8.2.1 Direct Integration Vs. Modal Superposition Method . . . . . . 98
8.2.2 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.2.3 About Damping . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.3 Response Spectrum Analysis . . . . . . . . . . . . . . . . . . . . . . . 108
8.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.3.2 How Does It Work ? . . . . . . . . . . . . . . . . . . . . . . . 109
8.3.3 Response Spectrum as Input Force . . . . . . . . . . . . . . . 111
8.4 Results of Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.4.1 Result of Response Spectrum Analysis . . . . . . . . . . . . . 114
8.4.2 Result of Transient Modal Dynamic Analysis . . . . . . . . . . 119
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
đang được dịch, vui lòng đợi..
Kết quả (Việt) 2:[Sao chép]
Sao chép!
Danh mục các hình xii
Danh sách các bảng xix
1 Giới thiệu 2
1.1 Với Gió, Life Gets Better. . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Chỉ cần một tháp? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 nhỏ tua bin gió (SWT) System. . . . . . . . . . . . . . . . . . . 5
dự án nhỏ Turbine gió Cal Poly của 1.4. . . . . . . . . . . . . . . . . 7
1.4.1 Cal Poly của tua bin gió nhỏ (SWT) Tổng quan hệ thống. . . 7
1.4.2 Tình trạng dự án. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Phạm vi của dự án luận án này. . . . . . . . . . . . . . . . . . . . . . . 12
2 Design of Wind Turbine Tháp 13
2.1 Loại of Wind Turbine Towers. . . . . . . . . . . . . . . . . . . . . . 14
vi
2.1.1 miễn phí-đứng hoặc Guy-dây. . . . . . . . . . . . . . . . . . . 14
2.1.2 Lattice Tower. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Tubular Tower. . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 lai Tower. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.5 Tháp Thiết kế Trend. . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Vật liệu dùng cho tua bin gió Tower. . . . . . . . . . . . . . . . . . . . 17
2.3 Chiều cao của tua bin gió Tower. . . . . . . . . . . . . . . . . . . . . . 17
3 tua bin gió nhỏ (SWT) Tower 19 Cal Poly của
3.1 tua bin gió Site. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.1 Location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 đất và gió Đặc điểm của trang web. . . . . . . . . . . . . . 20
3.2 Thiết kế tính năng của tua bin gió Tháp Cal Poly của. . . . . . . . . . 21
Kế hoạch 3.3 Installation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 gió Thiết kế Turbine tải 28
4.1 Giới thiệu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 DNV / RISO và Hướng dẫn IEC Load Xác định. . . . . . . 30
4.2.1 Các trường hợp tải trọng và các loại Load. . . . . . . . . . . . . . . . . . . 30
4.2.2 Các phương pháp xác định tải trọng thiết kế. . . . . . . . . . . . . 32
vii
4.2.3 Sử dụng Aeroelastic Phương pháp Load tính. . . . . . . . 33
4.2.4 Sử dụng đơn giản hóa phương trình Load để tải tính toán. . . . . 35
4.2.5 Xác định tải Từ đo. . . . . . . . . . . . 41
4.3 Tải trọng gió Given bởi Cal Poly. . . . . . . . . . . . . . . . . . . . . 41
4.3.1 Cal Poly của tải Case cho Tháp Design. . . . . . . . . . . . . 41
4.3.2 Tính toán lực đẩy tối đa. . . . . . . . . . . . . . . . . 42
4.4 So sánh và kết luận. . . . . . . . . . . . . . . . . . . . . . . 43
5 tua bin gió Tháp mẫu cho phần tử hữu hạn phân tích 48
5.1 Phân tích phần tử hữu hạn Tổng quan. . . . . . . . . . . . . . . . . . . . 48
5.2 Mô hình phần tử hữu hạn của tua bin gió Tower. . . . . . . . . . . . . 49
5.3 Mô hình giả định. . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Mô hình hóa không gian và Hệ tọa độ. . . . . . . . . . . . . . . . 51
5.5 Các yếu tố. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.1 tia Elements. . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.2 Sử dụng tia Elements. . . . . . . . . . . . . . . . . . . . . . 55
5.5.3 Shell Elements. . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5.4 Sử dụng Shell Elements. . . . . . . . . . . . . . . . . . . . . . . 58
5.5.5 Sử dụng Thánh Lễ và Rotary Quán tính Elements. . . . . . . . . . . . 58
viii
5.6 Tham gia các yếu tố. . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.6.1 đa điểm Constraint (MPC) - Tie. . . . . . . . . . . . . . 60
5.6.2 đa điểm Constraint (MPC) - Beam. . . . . . . . . . . . . 61
5.6.3 đa điểm Constraint (MPC) - Bản lề. . . . . . . . . . . . . 63
5.7 Boundary Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.8 Material Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6 Phân tích tĩnh of Wind Turbine Tháp 68
6.1 Tải Case: Installation (Tilt-up). . . . . . . . . . . . . . . . . . . . 68
6.1.1 Giới thiệu. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.2 Các giả định. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1.3 Kết quả. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2 Tải Case: Lực đẩy tối đa và Gravity. . . . . . . . . . . . . . . 74
6.2.1 Giới thiệu. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.2 Kết quả cho tải Thrust Áp dụng cho x-Direction. . . . . . . . 75
6.2.3 Kết quả cho Thrust tải Áp dụng cho y-Direction. . . . . . . . 79
6.3 Kết luận và Thiết kế Tải trọng cho Tháp Components. . . . . . . . . 83
7 phân tích năng động của tua bin gió Tháp 86
7.1 Natural Frequency Extraction. . . . . . . . . . . . . . . . . . . . . . 86
ix
7.1.1 Giới thiệu. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.1.2 Lý thuyết. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.1.3 Kết quả. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8 phân tích năng động: Seismic Phân tích 95
8.1 Evaulating Seismic rủi ro. . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2 Transient Response (Time-history) Phân tích. . . . . . . . . . . . . . 98
8.2.1 Tích hợp trực tiếp Vs. Modal Phương pháp xếp chồng. . . . . . 98
8.2.2 Đầu vào. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.2.3 Về Damping. . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.3 Response Spectrum Analysis. . . . . . . . . . . . . . . . . . . . . . . 108
8.3.1 Giới thiệu. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.3.2 Làm thế nào không làm việc? . . . . . . . . . . . . . . . . . . . . . . . 109
8.3.3 Response Spectrum là Input Force. . . . . . . . . . . . . . . 111
8.4 Kết quả phân tích. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.4.1 Kết quả Response Spectrum Analysis. . . . . . . . . . . . . 114
8.4.2 Kết quả Transient Modal động phân tích. . . . . . . . . . 119
8.5 Kết luận. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
đang được dịch, vui lòng đợi..
 
Các ngôn ngữ khác
Hỗ trợ công cụ dịch thuật: Albania, Amharic, Anh, Armenia, Azerbaijan, Ba Lan, Ba Tư, Bantu, Basque, Belarus, Bengal, Bosnia, Bulgaria, Bồ Đào Nha, Catalan, Cebuano, Chichewa, Corsi, Creole (Haiti), Croatia, Do Thái, Estonia, Filipino, Frisia, Gael Scotland, Galicia, George, Gujarat, Hausa, Hawaii, Hindi, Hmong, Hungary, Hy Lạp, Hà Lan, Hà Lan (Nam Phi), Hàn, Iceland, Igbo, Ireland, Java, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Kurd, Kyrgyz, Latinh, Latvia, Litva, Luxembourg, Lào, Macedonia, Malagasy, Malayalam, Malta, Maori, Marathi, Myanmar, Mã Lai, Mông Cổ, Na Uy, Nepal, Nga, Nhật, Odia (Oriya), Pashto, Pháp, Phát hiện ngôn ngữ, Phần Lan, Punjab, Quốc tế ngữ, Rumani, Samoa, Serbia, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenia, Somali, Sunda, Swahili, Séc, Tajik, Tamil, Tatar, Telugu, Thái, Thổ Nhĩ Kỳ, Thụy Điển, Tiếng Indonesia, Tiếng Ý, Trung, Trung (Phồn thể), Turkmen, Tây Ban Nha, Ukraina, Urdu, Uyghur, Uzbek, Việt, Xứ Wales, Yiddish, Yoruba, Zulu, Đan Mạch, Đức, Ả Rập, dịch ngôn ngữ.

Copyright ©2024 I Love Translation. All reserved.

E-mail: