Quantile Regression Methodology Quantile regression is based on the mi dịch - Quantile Regression Methodology Quantile regression is based on the mi Việt làm thế nào để nói

Quantile Regression Methodology Qua

Quantile Regression Methodology
Quantile regression is based on the minimi
zation of weighted absolute deviations
(also known as L_1 method) to estimate c
onditional quantile (percentile) functions
(Koenker and Bassett, 1978; Koenker and Ha
llock, 2001). For the median (quantile =
0.5), symmetric weights are used, and fo
r all other quantile
s (e.g., 0.1, 0.2 ....., 0.9)
asymmetric weights are employed. In contra
st, classical OLS regression (also known as
L_2 method) estimates conditional mean functi
ons. Unlike OLS, quantile regression is
not limited to explaining the mean of the
dependent variable. It
can be employed to
explain the determinants of the dependent vari
able at any point of the distribution of the
dependent variable. For hedoni
c price functions, quantile regr
ession makes it possible to
statistically examine the exte
nt to which housing characteri
stics are valued differently
across the distribution of housing prices.
One may argue that the same goal
may be accomplished by segmenting the
dependent variable, such as house price, in
to subsets according
to its unconditional
distribution and then applying OLS on the subs
ets, as done, for example, in Newsome
and Zietz (1992). However, as clearly argue
d by Heckman (1979), this “truncation of the
dependent variable” may create biased parame
ter estimates and shoul
d be avoided. Since
quantile regression employs the full data set,
a sample selection problem does not arise.
Quantile regression generalizes the con
cept of an unconditional quantile to a
quantile that is conditioned on one or more
covariates. Least squares minimizes the sum
of the squared residuals,
{}
0
2
,
0
min
k
j
j
k
ijji
b
ij
ybx
=
=





∑∑
,
6
where
y
i
is the dependent variable at observation
i
,
x
j,i
the
j
th regressor variable at
observation
i
, and
b
j
an estimate of the model’s
j
th regression coefficient. By contrast,
quantile regression minimizes a weighted
sum of the absolute deviations,
{}
0
,
0
min
k
j
j
k
ijjii
b
ij
ybxh
=
=

∑∑
,
where the weight
h
i
is defined as
2
i
hq
=
if the residual for the
i
th observation is strictly positive or as
22
i
hq
=

if the residual for the
i
th observation is negativ
e or zero. The variable
q
(0
1)
q
0/5000
Từ: -
Sang: -
Kết quả (Việt) 1: [Sao chép]
Sao chép!
Phương pháp hồi quy Quantile Quantile hồi qui được dựa trên minimization độ lệch tuyệt đối trọng (còn được gọi là phương pháp L_1) để ước lượng conditional quantile (percentile) chức năng (Koenker và Bassett, 1978; Koenker và Hàllock, 2001). Cho trung bình (quantile = 0,5), trọng lượng đối xứng được sử dụng, và chr tất cả quantiles (ví dụ: 0,1 0,2..., 0,9) trọng lượng không đối xứng được sử dụng. Trong contraSt, cổ điển hồi quy OLS (còn được gọi là Phương pháp L_2) ước tính có điều kiện có ý nghĩa functions. Không giống như OLS, quantile hồi qui là không giới hạn để giải thích nghĩa của các phụ thuộc vào biến. Nó có thể được sử dụng để giải thích các yếu tố quyết định vari phụ thuộccó thể tại bất kỳ điểm nào trong sự phân bố của các phụ thuộc vào biến. Cho hedonichức năng c giá, quantile regression làm cho nó có thể thống kê kiểm tra exteNT đến mà characteri nhà ởstics có giá trị khác nhau qua việc phân phối của nhà ở giá cả. Người ta có thể tranh luận rằng cùng một mục tiêu có thể được thực hiện bởi segmenting các phụ thuộc vào biến, chẳng hạn như nhà giá, nămđể con theo để mình vô điều kiện phân phối và sau đó áp dụng OLS trên các tàu ngầmETS, khi thực hiện, ví dụ, trong Newsome và Zietz (1992). Tuy nhiên, rõ ràng chod bởi Heckman (1979), điều này "truncation của các phụ thuộc vào biến"có thể tạo thành kiến parameTer ước lượng và tưd có thể tránh được. Kể từ khi quantile hồi quy sử dụng tập hợp dữ liệu đầy đủ, một vấn đề lựa chọn mẫu không phát sinh. Hồi qui Quantile generalizes các conCEPT một quantile vô điều kiện cho một quantile đó lạnh vào một hoặc nhiều hơn covariates. Tối thiểu tối thiểu hoá tổng hợp số dư bình phương, {}02,0MinkjjkIJJIbIJybx==−∑∑, 6nơi ytôi là biến phụ thuộc tại quan sát tôi, xj, tôi Các jth regressor Bắc-Ðông Bắc quan sát tôi, và bj một ước tính của các mô hình jCác hệ số hồi qui th. Ngược lại, quantile hồi qui giảm thiểu một trọng tổng của các độ lệch tuyệt đối, {}0,0MinkjjkijjiibIJybxh==−∑∑, nơi trọng lượng htôi được định nghĩa là 2tôiHQ=Nếu dư cho các tôiquan sát th là hoàn toàn tích cực hoặc như 22tôiHQ=−Nếu dư cho các tôiquan sát th là negative hoặc không có. Biến q(01)q<< là các quantile được ước lượng hoặc dự đoán. Lỗi chuẩn của hệ số ước tính được ước tính bằng cách sử dụng bootstrapping như đề nghị của Gould (1992, 1997). Họ là đáng kể ít nhạy cảm với heteroskedasticity hơn so với các tiêu chuẩn lỗi ước tính baSED về phương pháp được đề xuất bởi Rogers (1993).3Quantile hồi qui phân tích sự giống nhau hoặc dissimilarity hồi qui Hệ số tại các điểm khác nhau phân phối dependent biến, mà là bán hàng giá trong trường hợp của chúng tôi. Nó không xem xét không gian autocorrelation có thể có mặt trong các dữ liệu. Vì ngôi nhà tương tự giá unlikEly được tất cả clustemàu đỏ về mặt địa lý, một trong những không thể mong đợi hồi qui quantile sẽ loại bỏ sự cần thiết để giải thích cho không gian autocorrelation. 3 Quantile regressions sử dụng lệnh "sqreg" trong Stata cho hạt giống 1001. 7Trong bài báo này, không gian autocorrelation được kết hợp vào các hồi quy quantile khuôn khổ thông qua việc bổ sung một biến không gian tụt hậu. The không gian tụt hậu biến là định nghĩa như là WY, nơi W là một ma trận không gian trọng lượng của Kích cỡ nhà TxT, nơi mà T là số quan sát, và ở đâu ylà phụ thuộc vào biến vector, đó là kích thước Tx1. Bất kỳ trọng lượng không gian ma trận có thể được tuyển dụng, ví dụ, một dựa trên các tôith gần nhất phương pháp hàng xóm, hai vật tiếp giáp hoặc một số otheđề án r. Trong các presứng dụng tai mũi họng, một ma trận hai vật tiếp giáp được sử dụng.4Thêm một tụt hậu không gian cho một regres OLSSion là cũng được biết là gây ra suy luận Các vấn đề do endogeneity spatial các tụt hậu (Anselin, 2001). Đây không phải là bất kỳ khác nhau cho quantile táiOLS gression hơn. Chúng tôi follow là phương pháp được đề xuất bởi Kim và Muller (2004) để đối phó với endoge nàyneity các vấn đề trong quantile hồi qui. Như công cụ chúng tôi sử dụng các regressors và chậm lại không gian của họ.5 Tuy nhiên, thay vì sử dụng một công cụ ước tính mật độ chức năng cho các derivation tiêu chuẩn lỗi, chúng tôi làm theo tốt Các tuyến đường được thành lập của bootstrapping lỗi chuẩn (Greene, 2000, tr. 400-401).64. dữ liệu và kết quả dự toán Nghiên cứu này sử dụng nhiều danh sách Dịch vụ (MLS) dữ liệu từ Orem/Provo, Utah
đang được dịch, vui lòng đợi..
Kết quả (Việt) 2:[Sao chép]
Sao chép!
Quantile Regression Phương pháp
hồi quy quantile được dựa trên Minimi
zation của độ lệch tuyệt đối trọng
(còn được gọi là phương pháp L_1) để ước tính c
onditional quantile (percentile) chức năng
(Koenker và Bassett, 1978; Koenker và Hà
llock, 2001). Đối với trung bình (quantile =
0,5), trọng lượng đối xứng được sử dụng, và fo
r tất cả quantile khác
s (ví dụ, 0.1, 0.2 ....., 0,9)
trọng lượng không đối xứng được sử dụng. Trong contra
st, OLS hồi quy cổ điển (còn được gọi là
phương pháp L_2) ước tính có điều kiện functi bình
ons. Không giống như các phương pháp OLS, hồi quy quantile là
không giới hạn để giải thích ý nghĩa của các
biến phụ thuộc. Nó
có thể được sử dụng để
giải thích các yếu tố quyết định sự phụ thuộc vari
có thể ở bất kỳ điểm nào của sự phân bố của các
biến phụ thuộc. Đối với hedoni
chức năng giá c, quantile regr
ession làm cho nó có thể để
kiểm tra thống kê các exte
nt mà characteri nhà
stics có giá trị khác nhau
trên các phân phối của giá nhà đất.
Người ta có thể lập luận rằng cùng một mục tiêu
có thể được thực hiện bằng cách phân chia các
biến phụ thuộc, chẳng hạn như giá nhà ở đối
với các tập con theo
để vô điều kiện của nó
phân phối và sau đó áp dụng OLS trên các tàu ngầm
ETS, như thực hiện, ví dụ, trong Newsome
và Zietz (1992). Tuy nhiên, rõ ràng lập luận
d của Heckman (1979), điều này "cụt của
biến phụ thuộc" có thể tạo parame thiên vị
dự toán ter và shoul
muốn được tránh. Kể từ
hồi quy quantile sử dụng tập dữ liệu đầy đủ,
một vấn đề chọn mẫu không phát sinh.
Hồi quy quantile khái quát các con
khái của một quantile vô điều kiện cho một
quantile được điều kiện trên một hoặc nhiều
biến số. Hình vuông ít nhất giảm thiểu tổng
của các số dư bình phương,
{}
0
2
,
0
phút
k
j
j
k
ijji
b
ij
ybx
=
=

-



ΣΣ
,
6
nơi
y
i
là biến phụ thuộc vào quan sát
i
,
x
j, i
những
j
thứ biến regressor tại
quan sát
tôi
, và
b
j
ước tính của mô hình
j
thứ hệ số hồi quy. Ngược lại,
hồi quy quantile giảm thiểu một trọng
tổng các độ lệch tuyệt đối,
{}
0
,
0
phút
k
j
j
k
ijjii
b
ij
ybxh
=
=
-
ΣΣ
,
nơi mà trọng lượng
h
i
được định nghĩa là
2
i
hq
=
nếu số dư các
i
quan sát thứ đều lớn hơn hoặc là
22
i
hq
=
-
nếu còn sót lại cho
tôi
quan sát thứ là negativ
e hay không. Biến
q
(0
1)
q
<<

quantile được ước tính hoặc dự đoán.
Các sai số chuẩn của hệ số
ước lượng được ước tính bằng bootstrapping
như đề nghị của Gould (1992, 1997). Họ
là đáng kể ít nhạy cảm với
heteroskedasticity hơn
tiêu chuẩn ước tính lỗi ba
sed vào phương pháp được đề xuất bởi
Rogers (1993).
3
hồi quy quantile phân tích sự giống nhau hoặc không giống nhau của hồi quy
hệ số tại các điểm khác nhau
về sự phân bố của depe
biến ndent, mà là bán hàng
giá trong trường hợp của chúng tôi. Nó không
xem xét autocorrelatio không gian
n có thể có mặt trong các
dữ liệu. Bởi vì nhà có giá tương tự là unlik
ely là tất cả cluste
đỏ mặt địa lý, một
không thể mong đợi rằng hồi quy quantile sẽ
loại bỏ sự cần thiết phải chiếm không gian
tự tương quan.
3
Các hồi quy quantile sử dụng các "sqreg" lệnh trong Stata cho hạt giống 1001.
7
Trong bài báo này , tương quan không gian được đưa vào hồi quy quantile
khuôn khổ thông qua việc bổ sung
một biến lag không gian. Th
e biến lag không gian được
định nghĩa là
Wy
, nơi
W
là một ma trận trọng số không gian của
kích thước txt, trong đó T là số
quan sát, và nơi
y
là vector biến phụ thuộc, đó là kích thước của TX1. Bất kỳ
ma trận trọng số không gian có thể được sử dụng, ví dụ, một dựa trên
i
th vực gần
phương pháp hàng xóm, tiếp giáp, hoặc một số Othe
án r. Trong pres
ứng dụng ent, một
ma trận tiếp giáp được sử dụng.
4
Thêm một lag không gian để một OLS regres
sion nổi tiếng để gây ra suy luận
các vấn đề do sự nội sinh của các sp
lag atial (Anselin, 2001). Đây không phải là bất kỳ
khác nhau để tái quantile
hồi quy so với OLS. Chúng tôi follo
w phương pháp được đề xuất bởi Kim
và Muller (2004) để đối phó với điều này endoge
vấn đề neity trong hồi quy quantile. Như
cụ chúng tôi sử dụng các biến hồi quy và độ trễ không gian của họ.
5
Tuy nhiên, thay vì sử dụng một
hàm mật độ ước lượng cho nguồn gốc
của sai số chuẩn, chúng tôi làm theo cũng
lộ thành lập của bootstra
pping các sai số chuẩn
(Greene, 2000, tr. 400- 401).
6
4. Dữ liệu và dự toán Kết quả
nghiên cứu này sử dụng nhiều dịch vụ niêm yết (M
LS) dữ liệu từ Orem / Provo, Utah
đang được dịch, vui lòng đợi..
 
Các ngôn ngữ khác
Hỗ trợ công cụ dịch thuật: Albania, Amharic, Anh, Armenia, Azerbaijan, Ba Lan, Ba Tư, Bantu, Basque, Belarus, Bengal, Bosnia, Bulgaria, Bồ Đào Nha, Catalan, Cebuano, Chichewa, Corsi, Creole (Haiti), Croatia, Do Thái, Estonia, Filipino, Frisia, Gael Scotland, Galicia, George, Gujarat, Hausa, Hawaii, Hindi, Hmong, Hungary, Hy Lạp, Hà Lan, Hà Lan (Nam Phi), Hàn, Iceland, Igbo, Ireland, Java, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Kurd, Kyrgyz, Latinh, Latvia, Litva, Luxembourg, Lào, Macedonia, Malagasy, Malayalam, Malta, Maori, Marathi, Myanmar, Mã Lai, Mông Cổ, Na Uy, Nepal, Nga, Nhật, Odia (Oriya), Pashto, Pháp, Phát hiện ngôn ngữ, Phần Lan, Punjab, Quốc tế ngữ, Rumani, Samoa, Serbia, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenia, Somali, Sunda, Swahili, Séc, Tajik, Tamil, Tatar, Telugu, Thái, Thổ Nhĩ Kỳ, Thụy Điển, Tiếng Indonesia, Tiếng Ý, Trung, Trung (Phồn thể), Turkmen, Tây Ban Nha, Ukraina, Urdu, Uyghur, Uzbek, Việt, Xứ Wales, Yiddish, Yoruba, Zulu, Đan Mạch, Đức, Ả Rập, dịch ngôn ngữ.

Copyright ©2025 I Love Translation. All reserved.

E-mail: