Natural processes of fragmentationFigure 3. Colorado River viewed from Dead Horse Point, Utah. The canyon depth here is approximately 600 meters, where the river has gradually cut a wide separation of the original continuous habitat of the Colorado Plateau. Source: C. Michael HoganThe chief natural phenomena that have driven fragmentation are glacial advances, volcanic activity, geologic faulting, tectonic movement, mass land slumping, serpentinization, major sea level rise and climate oscillation. Each of these actions has the potential to create irreversible effective isolation of previously connected habitat units; note that, for example, climate oscillations or minor glacial advances lasting only a few centuries have a reasonable probability that the landscape will revert, since mass extinctions are not necessarily produced from natural oscillatory functions having an effective time scale this small, especially since regional refugia can mitigate losses of such scale.Major glacial advances may have taken tens or hundreds of thousands of years, such that the resulting habitat fragmentation is likely to have translated into new speciation as well as extinction of populations that were driven below minimum viable population size. One notable example of long timescale fragmentation on a large scale is the Andean uplift in the Amazon Basin. In this pre-Pleistocene epoch topographic change occurred so slowly that the uplift engendered further speciation and actually enhanced biodiversity.[2]
đang được dịch, vui lòng đợi..
