In statistics, logistic regression, or logit regression, or logit model[1] is a regression model where the dependent variable (DV) is categorical. This article covers the case of binary dependent variables—that is, where it can take only two values, such as pass/fail or win/lose. Cases with more than two categories are referred to as multinomial logistic regression, or, if the multiple categories are ordered, as ordinal logistic regression.[2]Logistic regression was developed by statistician David Cox in 1958[2][3] (although much work was done in the single independent variable case almost two decades earlier). The binary logistic model is used to estimate the probability of a binary response based on one or more predictor (or independent) variables (features). As such it is not a classification method. It could be called a qualitative response/discrete choice model in the terminology of economics.Logistic regression measures the relationship between the categorical dependent variable and one or more independent variables by estimating probabilities using a logistic function, which is the cumulative logistic distribution. Thus, it treats the same set of problems as probit regression using similar techniques, with the latter using a cumulative normal distribution curve instead. Equivalently, in the latent variable interpretations of these two methods, the first assumes a standard logistic distribution of errors and the second a standard normal distribution of errors.Logistic regression can be seen as a special case of generalized linear model and thus analogous to linear regression. The model of logistic regression, however, is based on quite different assumptions (about the relationship between dependent and independent variables) from those of linear regression. In particular the key differences of these two models can be seen in the following two features of logistic regression. First, the conditional distribution y mid x is a Bernoulli distribution rather than a Gaussian distribution, because the dependent variable is binary. Second, the predicted values are probabilities and are therefore restricted to (0,1) through the logistic distribution function because logistic regression predicts the probability of particular outcomes.Logistic regression is an alternative to Fisher's 1936 classification method, linear discriminant analysis.[4] If the assumptions of linear discriminant analysis hold, application of Bayes' rule to reverse the conditioning results in the logistic model, so if linear discriminant assumptions are true, logistic regression assumptions must hold. The converse is not true, so the logistic model has fewer assumptions than discriminant analysis and makes no assumption on the distribution of the independent variables[citation needed]. Where y is a discrete value Develop the logistic regression algorithm to determine what class a new input should fall into
đang được dịch, vui lòng đợi..