Greek ContributionsThe earliest history of physics is interrelated wit dịch - Greek ContributionsThe earliest history of physics is interrelated wit Việt làm thế nào để nói

Greek ContributionsThe earliest his

Greek Contributions
The earliest history of physics is interrelated with that of the other sciences. A number of contributions were made during the period of Greek civilization, dating from Thales and the early Ionian natural philosophers in the Greek colonies of Asia Minor (6th and 5th cent. B.C.). Democritus (c.460–370 B.C.) proposed an atomic theory of matter and extended it to other phenomena as well, but the dominant theories of matter held that it was formed of a few basic elements, usually earth, air, fire, and water.

The most important philosophy of the Greek period was produced by two men at Athens, Plato (427–347 B.C.) and his student Aristotle (384–322 B.C.); Aristotle in particular had a critical influence on the development of science in general and physics in particular. The Greek approach to physics was largely geometrical and reached its peak with Archimedes (287–212 B.C.), who studied a wide range of problems and anticipated the methods of the calculus. Another important scientist of the early Hellenistic period, centered in Alexandria, Egypt, was the astronomer Aristarchus (c.310–220 B.C.), who proposed a heliocentric, or sun-centered, system of the universe. However, just as the earlier atomic theory had not become generally accepted, so too the astronomical system that eventually prevailed was the geocentric system proposed by Hipparchus (190–120 B.C.) and developed in detail by Ptolemy (A.D. 85–A.D. 165).

The Scientific Revolution
The first areas of physics to receive close attention were mechanics and the study of planetary motions. Modern mechanics dates from the work of Galileo and Simon Stevin in the late 16th and early 17th cent. The great breakthrough in astronomy was made by Nicolaus Copernicus, who proposed (1543) the heliocentric model of the solar system that was later modified by Johannes Kepler (using observations by Tycho Brahe) into the description of planetary motions that is still accepted today. Galileo gave his support to this new system and applied his discoveries in mechanics to its explanation.

The full explanation of both celestial and terrestrial motions was not given until 1687, when Isaac Newton published his Principia [Mathematical Principles of Natural Philosophy]. This work, the most important document of the Scientific Revolution of the 16th and 17th cent., contained Newton's famous three laws of motion and showed how the principle of universal gravitation could be used to explain the behavior not only of falling bodies on the earth but also planets and other celestial bodies in the heavens. To arrive at his results, Newton invented one form of an entirely new branch of mathematics, the calculus (also invented independently by G. W. Leibniz), which was to become an essential tool in much of the later development in most branches of physics.

Other branches of physics also received attention during this period. William Gilbert, court physician to Queen Elizabeth I, published (1600) an important work on magnetism, describing how the earth itself behaves like a giant magnet. Robert Boyle (1627–91) studied the behavior of gases enclosed in a chamber and formulated the gas law named for him.

Newton himself discovered the separation of white light into a spectrum of colors and published an important work on optics, in which he proposed the theory that light is composed of tiny particles, or corpuscles. This corpuscular theory was related to the mechanistic philosophy presented early in the 17th cent. by René Descartes, according to which the universe functioned like a mechanical system describable in terms of mathematics.

Advances in Electricity, Magnetism, and Thermodynamics
The study of electricity and magnetism also came into its own during the 18th and 19th cents. C. A. Coulomb had discovered the inverse-square laws of electrostatics and magnetostatics in the late 18th cent. and Alessandro Volta had invented the electric battery, so that electric currents could also be studied. In 1820, H. C. Oersted found that a current-carrying conductor gives rise to a magnetic force surrounding it, and in 1831 Michael Faraday (and independently Joseph Henry) discovered the reverse effect, the production of an electric potential or current through magnetism.

Faraday invented the concept of the field of force to explain these phenomena and Maxwell, from c.1856, developed these ideas mathematically in his theory of electromagnetic radiation. He showed that electric and magnetic fields are propagated outward from their source at a speed equal to that of light and that light is one of several kinds of electromagnetic radiation, differing only in frequency and wavelength from the others. Experimental confirmation of Maxwell's theory was provided by Heinrich Hertz, who generated and detected electric waves in 1886 and verified their properties, at the same time foreshadowing their application in radio, television, and other devices. The wave theory of light had been reviv
0/5000
Từ: -
Sang: -
Kết quả (Việt) 1: [Sao chép]
Sao chép!
Greek ContributionsThe earliest history of physics is interrelated with that of the other sciences. A number of contributions were made during the period of Greek civilization, dating from Thales and the early Ionian natural philosophers in the Greek colonies of Asia Minor (6th and 5th cent. B.C.). Democritus (c.460–370 B.C.) proposed an atomic theory of matter and extended it to other phenomena as well, but the dominant theories of matter held that it was formed of a few basic elements, usually earth, air, fire, and water.The most important philosophy of the Greek period was produced by two men at Athens, Plato (427–347 B.C.) and his student Aristotle (384–322 B.C.); Aristotle in particular had a critical influence on the development of science in general and physics in particular. The Greek approach to physics was largely geometrical and reached its peak with Archimedes (287–212 B.C.), who studied a wide range of problems and anticipated the methods of the calculus. Another important scientist of the early Hellenistic period, centered in Alexandria, Egypt, was the astronomer Aristarchus (c.310–220 B.C.), who proposed a heliocentric, or sun-centered, system of the universe. However, just as the earlier atomic theory had not become generally accepted, so too the astronomical system that eventually prevailed was the geocentric system proposed by Hipparchus (190–120 B.C.) and developed in detail by Ptolemy (A.D. 85–A.D. 165).The Scientific RevolutionThe first areas of physics to receive close attention were mechanics and the study of planetary motions. Modern mechanics dates from the work of Galileo and Simon Stevin in the late 16th and early 17th cent. The great breakthrough in astronomy was made by Nicolaus Copernicus, who proposed (1543) the heliocentric model of the solar system that was later modified by Johannes Kepler (using observations by Tycho Brahe) into the description of planetary motions that is still accepted today. Galileo gave his support to this new system and applied his discoveries in mechanics to its explanation.The full explanation of both celestial and terrestrial motions was not given until 1687, when Isaac Newton published his Principia [Mathematical Principles of Natural Philosophy]. This work, the most important document of the Scientific Revolution of the 16th and 17th cent., contained Newton's famous three laws of motion and showed how the principle of universal gravitation could be used to explain the behavior not only of falling bodies on the earth but also planets and other celestial bodies in the heavens. To arrive at his results, Newton invented one form of an entirely new branch of mathematics, the calculus (also invented independently by G. W. Leibniz), which was to become an essential tool in much of the later development in most branches of physics.Other branches of physics also received attention during this period. William Gilbert, court physician to Queen Elizabeth I, published (1600) an important work on magnetism, describing how the earth itself behaves like a giant magnet. Robert Boyle (1627–91) studied the behavior of gases enclosed in a chamber and formulated the gas law named for him. Newton himself discovered the separation of white light into a spectrum of colors and published an important work on optics, in which he proposed the theory that light is composed of tiny particles, or corpuscles. This corpuscular theory was related to the mechanistic philosophy presented early in the 17th cent. by René Descartes, according to which the universe functioned like a mechanical system describable in terms of mathematics.Advances in Electricity, Magnetism, and ThermodynamicsThe study of electricity and magnetism also came into its own during the 18th and 19th cents. C. A. Coulomb had discovered the inverse-square laws of electrostatics and magnetostatics in the late 18th cent. and Alessandro Volta had invented the electric battery, so that electric currents could also be studied. In 1820, H. C. Oersted found that a current-carrying conductor gives rise to a magnetic force surrounding it, and in 1831 Michael Faraday (and independently Joseph Henry) discovered the reverse effect, the production of an electric potential or current through magnetism.Faraday invented the concept of the field of force to explain these phenomena and Maxwell, from c.1856, developed these ideas mathematically in his theory of electromagnetic radiation. He showed that electric and magnetic fields are propagated outward from their source at a speed equal to that of light and that light is one of several kinds of electromagnetic radiation, differing only in frequency and wavelength from the others. Experimental confirmation of Maxwell's theory was provided by Heinrich Hertz, who generated and detected electric waves in 1886 and verified their properties, at the same time foreshadowing their application in radio, television, and other devices. The wave theory of light had been reviv
đang được dịch, vui lòng đợi..
 
Các ngôn ngữ khác
Hỗ trợ công cụ dịch thuật: Albania, Amharic, Anh, Armenia, Azerbaijan, Ba Lan, Ba Tư, Bantu, Basque, Belarus, Bengal, Bosnia, Bulgaria, Bồ Đào Nha, Catalan, Cebuano, Chichewa, Corsi, Creole (Haiti), Croatia, Do Thái, Estonia, Filipino, Frisia, Gael Scotland, Galicia, George, Gujarat, Hausa, Hawaii, Hindi, Hmong, Hungary, Hy Lạp, Hà Lan, Hà Lan (Nam Phi), Hàn, Iceland, Igbo, Ireland, Java, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Kurd, Kyrgyz, Latinh, Latvia, Litva, Luxembourg, Lào, Macedonia, Malagasy, Malayalam, Malta, Maori, Marathi, Myanmar, Mã Lai, Mông Cổ, Na Uy, Nepal, Nga, Nhật, Odia (Oriya), Pashto, Pháp, Phát hiện ngôn ngữ, Phần Lan, Punjab, Quốc tế ngữ, Rumani, Samoa, Serbia, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenia, Somali, Sunda, Swahili, Séc, Tajik, Tamil, Tatar, Telugu, Thái, Thổ Nhĩ Kỳ, Thụy Điển, Tiếng Indonesia, Tiếng Ý, Trung, Trung (Phồn thể), Turkmen, Tây Ban Nha, Ukraina, Urdu, Uyghur, Uzbek, Việt, Xứ Wales, Yiddish, Yoruba, Zulu, Đan Mạch, Đức, Ả Rập, dịch ngôn ngữ.

Copyright ©2025 I Love Translation. All reserved.

E-mail: