Hình 3. Địa chấn phần của trang web thử nghiệm sản xuất, (a) nhúng dòng (Xline) và (b) tấn công tuyến (Inline) trong hình 2. Trên cơ sở cách diễn giải của bản ghi hình ảnh hình thành điện trở suất, sự hình thành nhúng của metan hydrat tập trung độ khu (MHCZ) là khoảng 20 ° β1 và các trang web AT1. MHCZ được phân phối trên dưới cùng mô phỏng phản xạ (BSRs), được thể hiện bằng các dòng xanh; MHCZ được đặc trưng bởi bộ phản xạ địa chấn mạnh mẽ. Ở đầu MHCZ được chỉ định bởi đường dây màu vàng-xanh.Tùy chọn con sốTrong lĩnh vực này, sự chỉ đạo thống trị của trầm tích cung cấp trong hệ thống kênh fan hâm mộ tàu ngầm giải thích để NE-SW (Takano et al., 2009 và Tamaki et al., 2015), trong khi trầm tích cung cấp từ NW cũng được đề nghị. Sự phân bố của trầm tích cát được xác định bởi những hướng dẫn (hình 4). Ba chiều facies phân phối đã được xác định trên cơ sở kết hợp dữ liệu tốt (đăng nhập địa vật lý và dữ liệu cốt lõi) và dữ liệu địa chấn. Hình 4 cho thấy một cái nhìn kế hoạch của facies phân phối trong theβ-MHCZ, được diễn giải từ phân tích dữ liệu địa chấn 3D bằng cách sử dụng phần mềm Stratimagic ™ cùng với dữ liệu tốt (Komatsu và ctv., 2014). Hình 4. Plan view of facies distribution within the β-MHCZ, which was interpreted from 3D seismic data analysis using Stratimagic™ software together with well data. On the basis of this analysis, a trough-filled turbidite channel was interpreted in this area. The distribution of the submarine fan sandy deposit was interpreted from NE to SW (modified from Komatsu et al., 2014). β1 = A1 (old name) and β2 = A2 (old name).Figure optionsIn this study, we performed a seismic waveform classification in the MH reservoir interval. Stratimagic™ uses a self-organizing neural network to map seismic facies character and assess variations in signal shape over an analysis interval (Addy, 1998). The most commonly occurring waveforms are identified and each trace is then classified on the basis of similarity or dissimilarity. The result is a subset of traces that together represent the diversity of signals over the entire area within the analyzed interval. Each trace is assigned a color, and the distribution of colors on the facies map represents the distribution of seismic shapes. As a result of the analysis, seismic facies map and model traces are obtained. On the basis of the seismic facies map and model traces, facies numbers 1, 2, 3, and 4 (warm color in the model traces in Fig. 4a) correspond to sand-dominant units in the A1 well. This indicates trough-filled turbidite channel deposits.On the basis of this analysis, a trough-filled turbidite channel was identified in this area. The distribution of the submarine-fan sandy deposit was interpreted as being directed mainly from NE to SW. These are very young, unconsolidated sediments that formed less than 1 Ma.3. Well distribution in 2012 pre-drilling and formation evaluation method3.1. Well distributionIn the pre-drilling campaign at the AT1 site, one production well (AT1-P) and two monitoring wells (AT1-MC and MT1) were drilled between February and March 2012. These were followed by one coring well (AT1-C) drilled between June and July 2012 (Fig. 5). Figure 5. Well distribution and bathymetric map of 2012. (a) Bathymetric map around AT1 and β1 site, (b) enlarged figure around AT1 (2012). Modified from Yamamoto et al. (2015).Figure optionsFigure 5 shows the well distribution in a plan view. Figure 5a is a bathymetric map around the AT1 and β1 sites and Figure 5b is an enlarged figure around AT1 (2012). As the geologic formation dips toward the northwest by approximately 20°, the production well (AT1-P) was located slightly down dip from the monitoring wells (AT1-MC and AT1-MT1). Therefore, the same geologic formation in AT1-P will appear approximately 5–7 m deeper than in the monitoring wells. We attempted to locate the production well at the midpoint between the two monitoring wells; however, because of technical reasons, this was not achieved (Yamamoto et al., 2015).The coring well was drilled at approximately 32 m northeast from the location of the AT1-MC well. As the AT1-MC well was inclined to the northeast, the actual distance between the two wells in the reservoir (MHCZ) section was approximately 20 m. The differences in depth between the two wells for the same sand layers were less than 1 m (Suzuki et al., 2015) because they were almost along the strike line.3.2. Geophysical loggingThe AT1-MC well was primarily designed to evaluate reservoir properties of MH-bearing sediments through logging while drilling (LWD) and wireline-logging (WL). In addition, we installed temperature-monitoring systems that used distributed temperature sensing (DTS) and a resistance temperature detector (RTD) developed by Schlumberger. The AT1-MT1 well was designed to obtain formation lithology by geophysical logging and to monitor temperatures by DTS and RTD.An extensive logging program was conducted at the AT1-MC well. The following LWD and WL tools were used: GeoVISION1 (resistivity image to confirm MH occurrence), EcoScope1 (neutron/density porosity, mineral spectroscopy, etc.), SonicScanner1(advanced sonic logging tool to evaluate MH saturation and anisotropy, etc.), CMR1/ProVISION1 (nuclear magnetic resonance tools to evaluate MH saturation and permeability), Pressure Express1 (formation pressure, fluid mobility measurements, hereafter, XPT1), and IsolationScanner1 (ultrasonic cement evaluation tools to evaluate cement consolidation and bonding). The results were used to evaluate reservoir properties of MH-bearing sediments, identify the production test interval in 2013, and evaluate cement bonding. More detailed information is available in Takayama et al. (2012).
đang được dịch, vui lòng đợi..
