Data sheet 1N4004 excerpt, after [DI4].The diode statement begins with dịch - Data sheet 1N4004 excerpt, after [DI4].The diode statement begins with Việt làm thế nào để nói

Data sheet 1N4004 excerpt, after [D


Data sheet 1N4004 excerpt, after [DI4].

The diode statement begins with a diode element name which must begin with “d” plus optional characters. Example diode element names include: d1, d2, dtest, da, db, d101. Two node numbers specify the connection of the anode and cathode, respectively, to other components. The node numbers are followed by a model name, referring to a subsequent “.model” statement.

The model statement line begins with “.model,” followed by the model name matching one or more diode statements. Next, a “d” indicates a diode is being modeled. The remainder of the model statement is a list of optional diode parameters of the form ParameterName=ParameterValue. None are used in Example below. Example2 has some parameters defined. For a list of diode parameters, see Table below.

General form: d[name] [anode] [cathode] [modelname] .model ([modelname] d [parmtr1=x] [parmtr2=y] . . .) Example: d1 1 2 mod1 .model mod1 d Example2: D2 1 2 Da1N4004 .model Da1N4004 D (IS=18.8n RS=0 BV=400 IBV=5.00u CJO=30 M=0.333 N=2)
The easiest approach to take for a SPICE model is the same as for a data sheet: consult the manufacturer’s web site. Table below lists the model parameters for some selected diodes. A fallback strategy is to build a SPICE model from those parameters listed on the data sheet. A third strategy, not considered here, is to take measurements of an actual device. Then, calculate, compare and adjust the SPICE parameters to the measurements.


Diode SPICE parameters

Symbol Name Parameter Units Default
IS IS Saturation current (diode equation) A 1E-14
RS RS Parsitic resistance (series resistance) Ω 0
n N Emission coefficient, 1 to 2 - 1
τD TT Transit time s 0
CD(0) CJO Zero-bias junction capacitance F 0
φ0 VJ Junction potential V 1
m M Junction grading coefficient - 0.5
- - 0.33 for linearly graded junction - -
- - 0.5 for abrupt junction - -
Eg EG Activation energy: eV 1.11
- - Si: 1.11 - -
- - Ge: 0.67 - -
- - Schottky: 0.69 - -
pi XTI IS temperature exponent - 3.0
- - pn junction: 3.0 - -
- - Schottky: 2.0 - -
kf KF Flicker noise coefficient - 0
af AF Flicker noise exponent - 1
FC FC Forward bias depletion capacitance coefficient - 0.5
BV BV Reverse breakdown voltage V ∞
IBV IBV Reverse breakdown current A 1E-3
If diode parameters are not specified as in “Example” model above, the parameters take on the default values listed in Table above

and Table below. These defaults model integrated circuit diodes. These are certainly adequate for preliminary work with discrete devices

For more critical work, use SPICE models supplied by the manufacturer [DIn],

SPICE vendors, and other sources. [smi]


SPICE parameters for selected diodes; sk=schottky Ge=germanium; else silicon.

Part IS RS N TT CJO M VJ EG XTI BV IBV
Default 1E-14 0 1 0 0 0.5 1 1.11 3 ∞ 1m
1N5711 sk 315n 2.8 2.03 1.44n 2.00p 0.333 - 0.69 2 70 10u
1N5712 sk 680p 12 1.003 50p 1.0p 0.5 0.6 0.69 2 20 -
1N34 Ge 200p 84m 2.19 144n 4.82p 0.333 0.75 0.67 - 60 15u
1N4148 35p 64m 1.24 5.0n 4.0p 0.285 0.6 - - 75 -
1N3891 63n 9.6m 2 110n 114p 0.255 0.6 - - 250 -
10A04 10A 844n 2.06m 2.06 4.32u 277p 0.333 - - - 400 10u
1N4004 1A 76.9n 42.2m 1.45 4.32u 39.8p 0.333 - - - 400 5u
1N4004 data sheet 18.8n - 2 - 30p 0.333 - - - 400 5u
Otherwise, derive some of the parameters from the data sheet. First select a value for spice parameter N between 1 and 2. It is required for the diode equation (n). Massobrio [PAGM] pp 9, recommends “.. n, the emission coefficient is usually about 2.”

In Table above, we see that power rectifiers 1N3891 (12 A), and 10A04 (10 A) both use about 2. The first four in the table are not relevant because they are schottky, schottky, germanium, and silicon small signal, respectively.
The saturation current, IS, is derived from the diode equation, a value of (VD, ID) on the graph in Figure above, and N=2 (n in the diode equation).

ID = IS(eVD/nVT -1) VT = 26 mV at 25oC n = 2.0 VD = 0.925 V at 1 A from graph 1 A = IS(e(0.925 V)/(2)(26 mV) -1) IS = 18.8E-9
The numerical values of IS=18.8n and N=2 are entered in last line of Table above for comparison to the manufacturers model for 1N4004, which is considerably different. RS defaults to 0 for now. It will be estimated later. The important DC static parameters are N, IS, and RS.

Rashid [MHR] suggests that TT, τD, the transit time, be approximated from the reverse recovery stored charge QRR, a data sheet parameter (not available on our data sheet) and IF, forward current.

ID = IS(eVD/nVT -1) τD = QRR/IF
We take the TT=0 default for lack of QRR. Though it would be reasonable to take TT for a similar rectifier like the 10A04 at 4.32u. The 1N3891 TT is not a valid choice because it is a fast recovery rectifier. CJO, the zero bias junction capacitance is estimated from the VR vs CJ graph in Figure above. The capacitance at the nearest to zero voltage on the graph is 30 pF at 1 V. If simulating high speed transient response, as in switching regulator power supplies, TT and CJO parameters must be provided.

The junction grading coefficient M is related to the doping profile of the junction. This is not a data sheet item. The default is 0.5 for an abrupt junction. We opt for M=0.333 corresponding to a linearly graded junction. The power rectifiers in Table above use lower values for M than 0.5.

We take the default values for VJ and EG. Many more diodes use VJ=0.6 than shown in Table above. However the 10A04 rectifier uses the default, which we use for our 1N4004 model (Da1N4001 in

Table above).

Use the default EG=1.11 for silicon diodes and rectifiers. Table above lists values for schottky and germanium diodes.

Take the XTI=3, the default IS temperature coefficient for silicon devices. See Table above for XTI for schottky diodes.

The abbreviated data sheet, Figure above, lists IR = 5 µA @ VR = 400 V, corresponding to IBV=5u and BV=400 respectively.

The 1n4004 SPICE parameters derived from the data sheet are listed in the last line of Table above for comparison to the manufacturer’s model listed above it. BV is only necessary if the simulation exceeds the reverse breakdown voltage of the diode, as is the case for zener diodes. IBV, reverse breakdown current, is frequently omitted, but may be entered if provided with BV.

Figure below shows a circuit to compare the manufacturers model, the model derived from the datasheet, and the default model using default parameters. The three dummy 0 V sources are necessary for diode current measurement. The 1 V source is swept from 0 to 1.4 V in 0.2 mV steps.

See .DC statement in the netlist in Table below. DI1N4004 is the manufacturer’s diode model, Da1N4004 is our derived diode model.




SPICE circuit for comparison of manufacturer model (D1), calculated datasheet model (D2), and default model (D3).


SPICE netlist parameters: (D1) DI1N4004 manufacturer’s model, (D2) Da1N40004 datasheet derived, (D3) default diode model.

*SPICE circuit from XCircuit v3.20 D1 1 5 DI1N4004 V1 5 0 0 D2 1 3 Da1N4004 V2 3 0 0 D3 1 4 Default V3 4 0 0 V4 1 0 1 .DC V4 0 1400mV 0.2m .model Da1N4004 D (IS=18.8n RS=0 BV=400 IBV=5.00u CJO=30 +M=0.333 N=2.0 TT=0) .MODEL DI1N4004 D (IS=76.9n RS=42.0m BV=400 IBV=5.00u CJO=39.8p +M=0.333 N=1.45 TT=4.32u) .MODEL Default D .end
We compare the three models in Figure below.

and to the datasheet graph data in Table below.
VD is the diode voltage versus the diode currents for the manufacturer’s model, our calculated datasheet model and the default diode model. The last column “1N4004 graph” is from the datasheet

voltage versus current curve in Figure above which we attempt to match. Comparison of the currents for the three model to the last column shows that the default model is good at low currents, the manufacturer’s model is good at high currents, and our calculated datasheet model is best of all up to 1 A. Agreement is almost perfect at 1 A because the IS calculation is based on diode voltage at 1 A. Our model grossly over states current above 1 A.




First trial of manufacturer model, calculated datasheet model, and default model.


Comparison of manufacturer model, calculated datasheet model, and default model to 1N4004 datasheet graph of V vs I.

model model model 1N4004 index VD manufacturer datasheet default graph 3500 7.000000e-01 1.612924e+00 1.416211e-02 5.674683e-03 0.01 4001 8.002000e-01 3.346832e+00 9.825960e-02 2.731709e-01 0.13 4500 9.000000e-01 5.310740e+00 6.764928e-01 1.294824e+01 0.7 4625 9.250000e-01 5.823654e+00 1.096870e+00 3.404037e+01 1.0 5000 1.000000e-00 7.395953e+00 4.675526e+00 6.185078e+02 2.0 5500 1.100000e+00 9.548779e+00 3.231452e+01 2.954471e+04 3.3 6000 1.200000e+00 1.174489e+01 2.233392e+02 1.411283e+06 5.3 6500 1.300000e+00 1.397087e+01 1.543591e+03 6.741379e+07 8.0 7000 1.400000e+00 1.621861e+01 1.066840e+04 3.220203e+09 12.
The solution is to increase RS from the default RS=0. Changing RS from 0 to 8m in the datasheet model causes the curve to intersect 10 A (not shown) at the same voltage as the manufacturer’s model. Increasing RS to 28.6m shifts the curve further to the right as shown in Figure below. This has the effect of more closely matching our datasheet model

to the datasheet graph (Figure above).

Table below shows that the current 1.224470e+01 A at 1.4 V matches the graph at 12 A. However, the current at 0.925 V has degraded from 1.096870e+00 above to 7.318536e-01.




Second trial to improve calculated datasheet model compared with manufacturer model and default model.


Changing Da1N4004 model statement RS=0 to RS=28.6m decreases the current at VD=1.4 V to 12.2 A.

.model Da1N4004 D (IS=18.8n RS=28.6m BV=400 IBV=5.00u CJO=30 +M=0.333 N=2.0 TT=0) model model 1N4001 index VD manufacturer datasheet graph 3505 7.010000e-01 1.628276e+00 1.432463e-02 0.01 4000 8.000000e-01 3.343072e+00 9.297594e-02 0.13 4500 9.000000e-01 5.310740e+00 5.102139e-01 0.7 4625 9.250000e-01 5.823654e+00 7.318536e-01 1.0 5000 1.000000e-00 7.39595
0/5000
Từ: -
Sang: -
Kết quả (Việt) 1: [Sao chép]
Sao chép!
Dữ liệu tấm 1N4004 trích, sau khi [DI4].Tuyên bố diode bắt đầu với một diode yếu tố tên đó phải bắt đầu với "d" cộng với ký tự tùy chọn. Tên gọi nguyên tố ví dụ diode: d1, d2, dtest, da, db, d101. Hai số hiệu nút chỉ định kết nối của anode, cathode, tương ứng, để các thành phần khác. Số hiệu nút được theo sau bởi một tên mô hình, đề cập đến một tuyên bố tiếp theo ".model".Mô hình tuyên bố dòng bắt đầu với ".model", theo sau là tên mô hình phù hợp với một hoặc nhiều diode phát biểu. Tiếp theo, một "d" cho thấy một diode được mô phỏng. Phần còn lại của câu mô hình là một danh sách các tham số tùy chọn diode dạng ParameterName = ParameterValue. Không có được sử dụng trong ví dụ dưới đây. Example2 có một số thông số được xác định. Để biết danh sách các diode tham số, xem bảng dưới đây. Dạng tổng quát: d [tên] [anode] [cathode] [modelname] .model ([modelname] d [parmtr1 = x] [parmtr2 = y]...) Ví dụ: d1 1 2 mod1 .model mod1 d Example2: D2 1 2 Da1N4004 .model Da1N4004 D (= 18.8n RS = 0 BV = 400 IBV = 5.00u CJO = 30 M = 0.333 N = 2) Các phương pháp dễ nhất để thực hiện cho một mô hình gia vị là giống như một bảng dữ liệu: tham khảo trang web của nhà sản xuất. Bảng dưới đây liệt kê các thông số mô hình cho một số điốt đã chọn. Một chiến lược dự phòng là xây dựng một mô hình gia vị từ những tham số được liệt kê trên bảng dữ liệu. Một chiến lược thứ ba, không xem xét ở đây, là để lấy số đo của một thiết bị thực tế. Sau đó, tính toán, so sánh và điều chỉnh các thông số SPICE để các phép đo.Diode SPICE parametersSymbol Name Parameter Units DefaultIS IS Saturation current (diode equation) A 1E-14RS RS Parsitic resistance (series resistance) Ω 0n N Emission coefficient, 1 to 2 - 1τD TT Transit time s 0CD(0) CJO Zero-bias junction capacitance F 0φ0 VJ Junction potential V 1m M Junction grading coefficient - 0.5- - 0.33 for linearly graded junction - -- - 0.5 for abrupt junction - -Eg EG Activation energy: eV 1.11- - Si: 1.11 - -- - Ge: 0.67 - -- - Schottky: 0.69 - -pi XTI IS temperature exponent - 3.0- - pn junction: 3.0 - -- - Schottky: 2.0 - -kf KF Flicker noise coefficient - 0af AF Flicker noise exponent - 1FC FC Forward bias depletion capacitance coefficient - 0.5BV BV Reverse breakdown voltage V ∞IBV IBV Reverse breakdown current A 1E-3If diode parameters are not specified as in “Example” model above, the parameters take on the default values listed in Table above and Table below. These defaults model integrated circuit diodes. These are certainly adequate for preliminary work with discrete devicesFor more critical work, use SPICE models supplied by the manufacturer [DIn], SPICE vendors, and other sources. [smi]SPICE parameters for selected diodes; sk=schottky Ge=germanium; else silicon.Part IS RS N TT CJO M VJ EG XTI BV IBVDefault 1E-14 0 1 0 0 0.5 1 1.11 3 ∞ 1m1N5711 sk 315n 2.8 2.03 1.44n 2.00p 0.333 - 0.69 2 70 10u1N5712 sk 680p 12 1.003 50p 1.0p 0.5 0.6 0.69 2 20 -1N34 Ge 200p 84m 2.19 144n 4.82p 0.333 0.75 0.67 - 60 15u1N4148 35p 64m 1.24 5.0n 4.0p 0.285 0.6 - - 75 -1N3891 63n 9.6m 2 110n 114p 0.255 0.6 - - 250 -10A04 10A 844n 2.06m 2.06 4.32u 277p 0.333 - - - 400 10u1N4004 1A 76.9n 42.2m 1.45 4.32u 39.8p 0.333 - - - 400 5u1N4004 data sheet 18.8n - 2 - 30p 0.333 - - - 400 5uOtherwise, derive some of the parameters from the data sheet. First select a value for spice parameter N between 1 and 2. It is required for the diode equation (n). Massobrio [PAGM] pp 9, recommends “.. n, the emission coefficient is usually about 2.” In Table above, we see that power rectifiers 1N3891 (12 A), and 10A04 (10 A) both use about 2. The first four in the table are not relevant because they are schottky, schottky, germanium, and silicon small signal, respectively. The saturation current, IS, is derived from the diode equation, a value of (VD, ID) on the graph in Figure above, and N=2 (n in the diode equation). ID = IS(eVD/nVT -1) VT = 26 mV at 25oC n = 2.0 VD = 0.925 V at 1 A from graph 1 A = IS(e(0.925 V)/(2)(26 mV) -1) IS = 18.8E-9 The numerical values of IS=18.8n and N=2 are entered in last line of Table above for comparison to the manufacturers model for 1N4004, which is considerably different. RS defaults to 0 for now. It will be estimated later. The important DC static parameters are N, IS, and RS.Rashid [MHR] suggests that TT, τD, the transit time, be approximated from the reverse recovery stored charge QRR, a data sheet parameter (not available on our data sheet) and IF, forward current. ID = IS(eVD/nVT -1) τD = QRR/IF We take the TT=0 default for lack of QRR. Though it would be reasonable to take TT for a similar rectifier like the 10A04 at 4.32u. The 1N3891 TT is not a valid choice because it is a fast recovery rectifier. CJO, the zero bias junction capacitance is estimated from the VR vs CJ graph in Figure above. The capacitance at the nearest to zero voltage on the graph is 30 pF at 1 V. If simulating high speed transient response, as in switching regulator power supplies, TT and CJO parameters must be provided.The junction grading coefficient M is related to the doping profile of the junction. This is not a data sheet item. The default is 0.5 for an abrupt junction. We opt for M=0.333 corresponding to a linearly graded junction. The power rectifiers in Table above use lower values for M than 0.5.We take the default values for VJ and EG. Many more diodes use VJ=0.6 than shown in Table above. However the 10A04 rectifier uses the default, which we use for our 1N4004 model (Da1N4001 inTable above). Use the default EG=1.11 for silicon diodes and rectifiers. Table above lists values for schottky and germanium diodes.Take the XTI=3, the default IS temperature coefficient for silicon devices. See Table above for XTI for schottky diodes.The abbreviated data sheet, Figure above, lists IR = 5 µA @ VR = 400 V, corresponding to IBV=5u and BV=400 respectively. The 1n4004 SPICE parameters derived from the data sheet are listed in the last line of Table above for comparison to the manufacturer’s model listed above it. BV is only necessary if the simulation exceeds the reverse breakdown voltage of the diode, as is the case for zener diodes. IBV, reverse breakdown current, is frequently omitted, but may be entered if provided with BV.
Figure below shows a circuit to compare the manufacturers model, the model derived from the datasheet, and the default model using default parameters. The three dummy 0 V sources are necessary for diode current measurement. The 1 V source is swept from 0 to 1.4 V in 0.2 mV steps.

See .DC statement in the netlist in Table below. DI1N4004 is the manufacturer’s diode model, Da1N4004 is our derived diode model.




SPICE circuit for comparison of manufacturer model (D1), calculated datasheet model (D2), and default model (D3).


SPICE netlist parameters: (D1) DI1N4004 manufacturer’s model, (D2) Da1N40004 datasheet derived, (D3) default diode model.

*SPICE circuit <03468.eps> from XCircuit v3.20 D1 1 5 DI1N4004 V1 5 0 0 D2 1 3 Da1N4004 V2 3 0 0 D3 1 4 Default V3 4 0 0 V4 1 0 1 .DC V4 0 1400mV 0.2m .model Da1N4004 D (IS=18.8n RS=0 BV=400 IBV=5.00u CJO=30 +M=0.333 N=2.0 TT=0) .MODEL DI1N4004 D (IS=76.9n RS=42.0m BV=400 IBV=5.00u CJO=39.8p +M=0.333 N=1.45 TT=4.32u) .MODEL Default D .end
We compare the three models in Figure below.

and to the datasheet graph data in Table below.
VD is the diode voltage versus the diode currents for the manufacturer’s model, our calculated datasheet model and the default diode model. The last column “1N4004 graph” is from the datasheet

voltage versus current curve in Figure above which we attempt to match. Comparison of the currents for the three model to the last column shows that the default model is good at low currents, the manufacturer’s model is good at high currents, and our calculated datasheet model is best of all up to 1 A. Agreement is almost perfect at 1 A because the IS calculation is based on diode voltage at 1 A. Our model grossly over states current above 1 A.




First trial of manufacturer model, calculated datasheet model, and default model.


Comparison of manufacturer model, calculated datasheet model, and default model to 1N4004 datasheet graph of V vs I.

model model model 1N4004 index VD manufacturer datasheet default graph 3500 7.000000e-01 1.612924e+00 1.416211e-02 5.674683e-03 0.01 4001 8.002000e-01 3.346832e+00 9.825960e-02 2.731709e-01 0.13 4500 9.000000e-01 5.310740e+00 6.764928e-01 1.294824e+01 0.7 4625 9.250000e-01 5.823654e+00 1.096870e+00 3.404037e+01 1.0 5000 1.000000e-00 7.395953e+00 4.675526e+00 6.185078e+02 2.0 5500 1.100000e+00 9.548779e+00 3.231452e+01 2.954471e+04 3.3 6000 1.200000e+00 1.174489e+01 2.233392e+02 1.411283e+06 5.3 6500 1.300000e+00 1.397087e+01 1.543591e+03 6.741379e+07 8.0 7000 1.400000e+00 1.621861e+01 1.066840e+04 3.220203e+09 12.
The solution is to increase RS from the default RS=0. Changing RS from 0 to 8m in the datasheet model causes the curve to intersect 10 A (not shown) at the same voltage as the manufacturer’s model. Increasing RS to 28.6m shifts the curve further to the right as shown in Figure below. This has the effect of more closely matching our datasheet model

to the datasheet graph (Figure above).

Table below shows that the current 1.224470e+01 A at 1.4 V matches the graph at 12 A. However, the current at 0.925 V has degraded from 1.096870e+00 above to 7.318536e-01.




Second trial to improve calculated datasheet model compared with manufacturer model and default model.


Changing Da1N4004 model statement RS=0 to RS=28.6m decreases the current at VD=1.4 V to 12.2 A.

.model Da1N4004 D (IS=18.8n RS=28.6m BV=400 IBV=5.00u CJO=30 +M=0.333 N=2.0 TT=0) model model 1N4001 index VD manufacturer datasheet graph 3505 7.010000e-01 1.628276e+00 1.432463e-02 0.01 4000 8.000000e-01 3.343072e+00 9.297594e-02 0.13 4500 9.000000e-01 5.310740e+00 5.102139e-01 0.7 4625 9.250000e-01 5.823654e+00 7.318536e-01 1.0 5000 1.000000e-00 7.39595
đang được dịch, vui lòng đợi..
 
Các ngôn ngữ khác
Hỗ trợ công cụ dịch thuật: Albania, Amharic, Anh, Armenia, Azerbaijan, Ba Lan, Ba Tư, Bantu, Basque, Belarus, Bengal, Bosnia, Bulgaria, Bồ Đào Nha, Catalan, Cebuano, Chichewa, Corsi, Creole (Haiti), Croatia, Do Thái, Estonia, Filipino, Frisia, Gael Scotland, Galicia, George, Gujarat, Hausa, Hawaii, Hindi, Hmong, Hungary, Hy Lạp, Hà Lan, Hà Lan (Nam Phi), Hàn, Iceland, Igbo, Ireland, Java, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Kurd, Kyrgyz, Latinh, Latvia, Litva, Luxembourg, Lào, Macedonia, Malagasy, Malayalam, Malta, Maori, Marathi, Myanmar, Mã Lai, Mông Cổ, Na Uy, Nepal, Nga, Nhật, Odia (Oriya), Pashto, Pháp, Phát hiện ngôn ngữ, Phần Lan, Punjab, Quốc tế ngữ, Rumani, Samoa, Serbia, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenia, Somali, Sunda, Swahili, Séc, Tajik, Tamil, Tatar, Telugu, Thái, Thổ Nhĩ Kỳ, Thụy Điển, Tiếng Indonesia, Tiếng Ý, Trung, Trung (Phồn thể), Turkmen, Tây Ban Nha, Ukraina, Urdu, Uyghur, Uzbek, Việt, Xứ Wales, Yiddish, Yoruba, Zulu, Đan Mạch, Đức, Ả Rập, dịch ngôn ngữ.

Copyright ©2024 I Love Translation. All reserved.

E-mail: