Burst mode[edit]
An entire block of data is transferred in one contiguous sequence. Once the DMA controller is granted access to the system bus by the CPU, it transfers all bytes of data in the data block before releasing control of the system buses back to the CPU, but renders the CPU inactive for relatively long periods of time. The mode is also called "Block Transfer Mode". It is also used to stop unnecessary data.
Cycle stealing mode[edit]
The cycle stealing mode is used in systems in which the CPU should not be disabled for the length of time needed for burst transfer modes. In the cycle stealing mode, the DMA controller obtains access to the system bus the same way as in burst mode, using BR (Bus Request) and BG (Bus Grant) signals, which are the two signals controlling the interface between the CPU and the DMA controller. However, in cycle stealing mode, after one byte of data transfer, the control of the system bus is deasserted to the CPU via BG. It is then continually requested again via BR, transferring one byte of data per request, until the entire block of data has been transferred. By continually obtaining and releasing the control of the system bus, the DMA controller essentially interleaves instruction and data transfers. The CPU processes an instruction, then the DMA controller transfers one data value, and so on. On the one hand, the data block is not transferred as quickly in cycle stealing mode as in burst mode, but on the other hand the CPU is not idled for as long as in burst mode. Cycle stealing mode is useful for controllers that monitor data in real time.
Transparent mode[edit]
The transparent mode takes the most time to transfer a block of data, yet it is also the most efficient mode in terms of overall system performance. The DMA controller only transfers data when the CPU is performing operations that do not use the system buses. It is the primary advantage of the transparent mode that the CPU never stops executing its programs and the DMA transfer is free in terms of time. The disadvantage of the transparent mode is that the hardware needs to determine when the CPU is not using the system buses, which can be complex.