Introduction to the Classical Theory of Particles and FieldsGeometry of Minkowski Space ............................. 11.1 Spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 AffineandMetricStructures.............................. 101.3 Vectors, Tensors, and n-Forms ............................ 221.4 LinesandSurfaces....................................... 321.5 Poincar´ e Invariance...................................... 381.6 WorldLines ............................................ 43Notes....................................................... 482 Relativistic Mechanics ..................................... 512.1 Dynamical Law for Relativistic Particles . . . . . . . . . . . . . . . . . . . . 522.2 TheMinkowskiForce .................................... 582.3 Invariants of the Electromagnetic Field . . . . . . . . . . . . . . . . . . . . . 652.4 Motion of a Charged Particle in Constantand Uniform Electromagnetic Fields . . . . . . . . . . . . . . . . . . . . . . . 692.5 The Principle of Least Action. Symmetriesand Conservation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752.6 Reparametrization Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902.7 SpinningParticle........................................ 982.8 Relativistic Kepler Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042.9 A Charged Particle Driven by a Magnetic Monopole . . . . . . . . . 1102.10 Collisions and Decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113Notes.......................................................1183 Electromagnetic Field ..................................... 1233.1 Geometric Contents of Maxwell’s Equations . . . . . . . . . . . . . . . . . 1243.2 Physical Contents of Maxwell’s Equations . . . . . . . . . . . . . . . . . . 1273.3 Other Forms of Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . 135Notes.......................................................139XII Contents4 Solutions to Maxwell’s Equations .......................... 1414.1 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1414.2 Solutions to Maxwell’s Equations: Some General Observations . 1524.3 Free Electromagnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1574.4 The Retarded Green’s Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 1674.5 CovariantRetardedVariables .............................1744.6 Electromagnetic Field Generated by a Single ChargeMoving Along an Arbitrary Timelike World Line . . . . . . . . . . . . 1794.7 Another Way of Looking at Retarded Solutions . . . . . . . . . . . . . 1834.8 FieldDuetoaMagneticMonopole ........................187Notes.......................................................1915 Lagrangian Formalism in Electrodynamics ................. 1955.1 Action Principle. Symmetries and Conservation Laws . . . . . . . . 1955.2 Poincar´ e Invariance......................................2065.3 Conformal Invariance ....................................2165.4 Duality Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2255.5 Gauge Invariance........................................2285.6 StringsandBranes ......................................235Notes.......................................................2456 Self-Interaction in Electrodynamics ........................ 2496.1 Rearrangement of Degrees of Freedom. . . . . . . . . . . . . . . . . . . . . . 2496.2 Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2586.3 Energy-MomentumBalance...............................2656.4 The Lorentz–Dirac Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2746.5 Alternative Methods of Deriving the Equation of MotionforaDressedChargedParticle ............................278Notes.......................................................2837 Lagrangian Formalism for Gauge Theories ................. 2857.1 The Yang–Mills–Wong Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2857.2 TheStandardModel.....................................2947.3 Lattice Formulation of Gauge Theories . . . . . . . . . . . . . . . . . . . . . 298Notes.......................................................3058 Solutions to the Yang–Mills Equations ..................... 3078.1 The Yang–Mills Field Generated by a Single Quark . . . . . . . . . . 3098.2 Ansatz.................................................3178.3 The Yang–Mills Field Generated by Two Quarks . . . . . . . . . . . . 3208.4 The Yang–Mills Field Generated by N Quarks ..............3268.5 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3318.6 VorticesandMonopoles ..................................3348.7 Two Phases of the Subnuclear Realm . . . . . . . . . . . . . . . . . . . . . . 343Notes.......................................................348
đang được dịch, vui lòng đợi..
