Advantages and disadvantages of SCPVarious factors such as nutrient co dịch - Advantages and disadvantages of SCPVarious factors such as nutrient co Việt làm thế nào để nói

Advantages and disadvantages of SCP

Advantages and disadvantages of SCP
Various factors such as nutrient composition, amino acid profile, vitamin and nucleic acid content as well as palatability, allergies, and gastrointestinal effects should be considered for nutritional value. The nutritive and food values of SCP vary with the microorganisms used. The method of harvesting, drying, and processing has an effect on the nutritive value of the finished product. SCP basically comprises proteins, fats, carbohydrates, ash, water, and other elements such as phosphorus and potassium. The composition depends on the organism and substrate used for growth. Proteins not only provide a nutritional component in a food system but also perform a number of other functions. SCP has high protein and low fat content. It has good amino acid composition, which is rich in lysine but poor in sulfur-containing amino acids such as methionine and cysteine. It is a good source of vitamins, particularly B-complex, thiamine, riboflavin, and folic acid. SCP from yeast and fungi has up to 50% to 55% protein and it has high protein–carbohydrate ratio compared with forage. SCP from bacteria has more than 80% protein, although it is poor in sulfur-containing amino acids and it has high nucleic acid content (Burgents et al. 2004; Campa-Cordova et al. 2002; Mahajan and Dua 1995; Oliva-Teles and Goncalves 2001; Tovar et al. 2002). There are many problems in the adoption of SCP on a global basis such as a high concentration of nucleic acids (6%–10%), which elevates the uric acid level in serum and results in kidney stone formation. Approximately 70% to 80% of the total nitrogen is represented by amino acids, whereas the rest occur in nucleic acids. This concentration of nucleic acids is higher than in other conventional proteins and is characteristic of all fastgrowing organisms. SCP from yeasts and fungi have high nucleic acid content. The filamentous fungi show slower growth rates than yeasts and bacteria, there is a high risk of contamination, and some strains produce mycotoxins; hence, they should be well screened before consumption. Similarly, SCP from bacteria has high ribonucleic acid content, and high risk of contamination during the production process and during the recovery of the cells. All these detrimental factors affect the acceptability of SCP as a global food (Nasseri et al. 2011).



Conclusion
Microorganisms such as algae, bacteria, yeasts, and fungi are used as protein sources. Yeasts can be considered as the oldest industrial microorganism. It is believed that the early fermentation systems for alcohol production and bread making formed through the natural microbial contaminants of flour, other milled grains, and from fruits or other juices containing sugar. Such microbial flora would have included wild yeasts and lactic acid bacteria, which were associated with cultivated grains and fruits. For hundreds of years, it was traditional for bakers to obtain the yeast to leave their bread as by-products of brewing and wine making. The baker’s yeast industry is a major market. New strains of baker’s yeast from recombinant DNA technology, which produces CO2 more rapidly and is more resistant to stress, or which produces proteins or metabolites that can modify the flavor of bread, dough rheology, or shelf life are now emerging. This low-value, high-volume product is produced under stringent environmental conditions to obtain the maximum product/biomass yield, which is dependent on process design, cost, and the strain of S. cerevisiae used. As with all biotechnological processes, research and development in this area is ongoing to create more beneficial strains and to optimize the fermentation and processing steps that make up the baker’s yeast process. From many studies, it was found that yeast cells help control cancer. The same genes that control the cell cycle in baker’s yeast (and that malfunction in tumor cells) exist in more or less the same capacity in human cells, and that the yeast strains can be used to control cancer cells. S. cerevisiae is used as a model system for molecular research because the basic cellular mechanics of replication, recombination, cell division, and metabolism are generally conserved between yeast and larger eukaryotes, including mammals. The SCP is another widely used microbial biomass, which has proteins, fats, carbohydrates, ash, water, and other elements such as phosphorus and potassium. SCP is not widely accepted as a global food due to its high nucleic acid content. Attempts to improve the acceptability of SCP products should be intensified. Further research and development will ensure the use of microbial biomass as SCP or as a supplement in the diet.
Acknowledgments
The author is thankful to Kanchan Prabha Rathoure (Mrs.) for technical suggestions and Madhav Pandey for English corrections to make the text more effective.
0/5000
Từ: -
Sang: -
Kết quả (Việt) 1: [Sao chép]
Sao chép!
Những lợi thế và bất lợi của SCPCác yếu tố khác nhau như các thành phần dinh dưỡng, axit amin profile, vitamin và axit nucleic nội dung cũng như palatability, dị ứng và tác dụng tiêu hóa nên được xem xét cho giá trị dinh dưỡng. Giá trị dinh dưỡng và thực phẩm của SCP khác nhau với các vi sinh vật được sử dụng. Phương pháp thu hoạch, sấy và chế biến có ảnh hưởng đến giá trị dinh dưỡng của sản phẩm hoàn tất. SCP về cơ bản bao gồm protein, chất béo, carbohydrate, ash, nước và các yếu tố khác như phốt pho, và kali. Các thành phần phụ thuộc vào các sinh vật và bề mặt được sử dụng cho sự tăng trưởng. Protein không chỉ cung cấp một phần dinh dưỡng trong một hệ thống thực phẩm nhưng cũng thực hiện một số chức năng khác. SCP có protein cao và hàm lượng chất béo thấp. Nó có thành phần axit amin tốt, đó là phong phú trong lysine nhưng nghèo amino axit có chứa lưu huỳnh như Methionin, cystein. Nó là một nguồn tốt của các vitamin, đặc biệt là B-complex, Thiamin, riboflavin và axit folic. SCP từ nấm men và nấm đã lên đến 50%-55% protein và nó có tỷ lệ đạm-carbohydrate cao so với thức ăn gia súc. SCP từ vi khuẩn này có hơn 80% protein, mặc dù nó là người nghèo có chứa lưu huỳnh amino axit và có nội dung cao nucleic acid (Burgents và ctv. 2004; Campa-Cordova ctv. 2002; Mahajan và Dua 1995; Oliva Teles và Goncalves 2001; Tovar ctv. 2002). Có rất nhiều vấn đề trong việc áp dụng SCP trên cơ sở toàn cầu như một nồng độ cao của acid nucleic (6%-10%), nâng cao mức uric acid huyết thanh và các kết quả trong thận đá hình thành. Khoảng 70% đến 80% nitơ tổng số được đại diện bởi các axit amin, trong khi phần còn lại xảy ra trong các axit nucleic. Này nồng độ của các axit nucleic là cao hơn trong protein khác thường và đặc trưng của tất cả các sinh vật fastgrowing. SCP từ nấm men và nấm có axit nucleic cao nội dung. Các loại nấm sợi Hiển thị chậm hơn tốc độ tăng trưởng nấm men và vi khuẩn, có một nguy cơ cao nhiễm bẩn, và sản xuất một số chủng mycotoxin; do đó, họ nên được tốt kiểm tra trước khi tiêu thụ. Tương tự, SCP từ vi khuẩn này có nội dung cao ribonucleic acid, nguy cơ cao về ô nhiễm trong quá trình sản xuất và trong thời gian phục hồi các tế bào. Tất cả những yếu tố bất lợi ảnh hưởng đến acceptability SCP là một thực phẩm toàn cầu (Nasseri et al. năm 2011).Kết luậnMicroorganisms such as algae, bacteria, yeasts, and fungi are used as protein sources. Yeasts can be considered as the oldest industrial microorganism. It is believed that the early fermentation systems for alcohol production and bread making formed through the natural microbial contaminants of flour, other milled grains, and from fruits or other juices containing sugar. Such microbial flora would have included wild yeasts and lactic acid bacteria, which were associated with cultivated grains and fruits. For hundreds of years, it was traditional for bakers to obtain the yeast to leave their bread as by-products of brewing and wine making. The baker’s yeast industry is a major market. New strains of baker’s yeast from recombinant DNA technology, which produces CO2 more rapidly and is more resistant to stress, or which produces proteins or metabolites that can modify the flavor of bread, dough rheology, or shelf life are now emerging. This low-value, high-volume product is produced under stringent environmental conditions to obtain the maximum product/biomass yield, which is dependent on process design, cost, and the strain of S. cerevisiae used. As with all biotechnological processes, research and development in this area is ongoing to create more beneficial strains and to optimize the fermentation and processing steps that make up the baker’s yeast process. From many studies, it was found that yeast cells help control cancer. The same genes that control the cell cycle in baker’s yeast (and that malfunction in tumor cells) exist in more or less the same capacity in human cells, and that the yeast strains can be used to control cancer cells. S. cerevisiae is used as a model system for molecular research because the basic cellular mechanics of replication, recombination, cell division, and metabolism are generally conserved between yeast and larger eukaryotes, including mammals. The SCP is another widely used microbial biomass, which has proteins, fats, carbohydrates, ash, water, and other elements such as phosphorus and potassium. SCP is not widely accepted as a global food due to its high nucleic acid content. Attempts to improve the acceptability of SCP products should be intensified. Further research and development will ensure the use of microbial biomass as SCP or as a supplement in the diet.AcknowledgmentsThe author is thankful to Kanchan Prabha Rathoure (Mrs.) for technical suggestions and Madhav Pandey for English corrections to make the text more effective.
đang được dịch, vui lòng đợi..
 
Các ngôn ngữ khác
Hỗ trợ công cụ dịch thuật: Albania, Amharic, Anh, Armenia, Azerbaijan, Ba Lan, Ba Tư, Bantu, Basque, Belarus, Bengal, Bosnia, Bulgaria, Bồ Đào Nha, Catalan, Cebuano, Chichewa, Corsi, Creole (Haiti), Croatia, Do Thái, Estonia, Filipino, Frisia, Gael Scotland, Galicia, George, Gujarat, Hausa, Hawaii, Hindi, Hmong, Hungary, Hy Lạp, Hà Lan, Hà Lan (Nam Phi), Hàn, Iceland, Igbo, Ireland, Java, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Kurd, Kyrgyz, Latinh, Latvia, Litva, Luxembourg, Lào, Macedonia, Malagasy, Malayalam, Malta, Maori, Marathi, Myanmar, Mã Lai, Mông Cổ, Na Uy, Nepal, Nga, Nhật, Odia (Oriya), Pashto, Pháp, Phát hiện ngôn ngữ, Phần Lan, Punjab, Quốc tế ngữ, Rumani, Samoa, Serbia, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenia, Somali, Sunda, Swahili, Séc, Tajik, Tamil, Tatar, Telugu, Thái, Thổ Nhĩ Kỳ, Thụy Điển, Tiếng Indonesia, Tiếng Ý, Trung, Trung (Phồn thể), Turkmen, Tây Ban Nha, Ukraina, Urdu, Uyghur, Uzbek, Việt, Xứ Wales, Yiddish, Yoruba, Zulu, Đan Mạch, Đức, Ả Rập, dịch ngôn ngữ.

Copyright ©2025 I Love Translation. All reserved.

E-mail: