347Height, Weight, Waist size, and Chest size. A correlation matrix fo dịch - 347Height, Weight, Waist size, and Chest size. A correlation matrix fo Trung làm thế nào để nói

347Height, Weight, Waist size, and


347
Height, Weight, Waist size, and Chest size. A correlation matrix for these variables is likely to show large positive correlations between High school GPA, IQ, and SAT scores. Similarly, Height, Weight, Waist and Chest measurements will probably be positively correlated. So, the question is whether High school GPA, IQ, and SAT scores are related because of some underlying, common factor. The answer, of course, is yes, because they are all measures of intelligence. Similarly, Height, Weight, Waist, and Chest measurements are all related to physical size. So the conclusion is that there are only two underlying factors that are being measured by the eight variables, and these factors are intelligence and physical size. These common factors are sometimes called latent variables. Since “intelligence” is an abstract concept, it cannot be measured directly: instead, measures such as GPA, IQ, etc. are used to estimate the intelligence of an individual.
In the simple example presented above, it’s not too difficult to isolate the pattern of correlations that link the variables in the two groups; but when you have hundreds of variables and there are multiple underlying factors, it is much more difficult to identify the factors and the variables associated with each factor.
The purpose of Factor Analysis is to identify a set of underlying factors that explain the relationships between correlated variables. Generally, there will be fewer underlying factors than variables, so the factor analysis result is simpler than the original set of variables.
Principal Component Analysis is very similar to Factor Analysis, and the two procedures are sometimes confused. Both procedures are built on the same mathematical techniques. Factor Analysis assumes that the relationship (correlation) between variables is due to a set of underlying factors (latent variables) that are being measured by the variables.
Principal Components Analysis is not based on the idea that there are underlying factors that are being measured. It is simply a technique for finding a linear combination of the original variables that produce orthogonal (uncorrelated) variables that explain the maximum amount of variance in the original variables. It is often used to reduce the number of variables while retaining most of the predictive power.
The goal of PCA is to rigidly rotate the axes of an n-dimensional space (where n is the number of variables) to a new orientation that has the following properties:
1. The first axis corresponds to the direction with the most variance among the variables, and subsequent axes have progressively less variance in their direction.
2. The correlation between each pair of rotated axes is zero. This is a result of the axes being orthogonal to each other (i.e., they are uncorrelated).
PCA is performed by finding the eigenvalues and eigenvectors of the covariance or correlation matrix. The eigenvectors represent a linear transformation from the original variable coordinates to rotated coordinates that satisfy the criteria listed above. For example, if you have variables X1 through Xn. Then the eigenvector components would be:
0/5000
Từ: -
Sang: -
Kết quả (Trung) 1: [Sao chép]
Sao chép!
347身高、 体重、 腰围大小和胸部大小。为这些变量的相关系数矩阵很可能表明高中 GPA、 智商和 SAT 分数大呈正相关。同样的测量身高、 体重、 腰围和胸将可能呈正相关。所以,问题是是否高中 GPA、 智商和 SAT 分数有涉及一些基本的、 共同的因素。答案当然是肯定的因为他们都是情报的一切措施。同样,身高、 体重、 胸部和腰部,测量是所有与相关的物理大小。所以结论是只有两个由八个变量,被测量的基本因素,这些因素是智力和身体的大小。这些共同的因素有时也称为潜变量。由于"情报"是一个抽象的概念,不能直接测量: 相反,措施,如 GPA、 智商等,用于估计个人的情报。在上面给出的简单示例中,它不是太难分离的模式链接中两组 ; 变量的相关性但当你有几百个变量,多个潜在因素,这是更难确定的因素和各因素与相关联的变量。因子分析法的目的是确定一套解释相关变量之间的关系的根本因素。一般来说,会更少的潜在因素,而不是变量,,所以因素分析的结果是比原始组的变量更简单。主成分分析是非常相似的因素分析,和这两种程序有时会感到困惑。这两个程序都建立在相同的数学技术。因子分析假定变量之间的关系 (相关性) 是一套由变量被度量的基本因素 (潜在变量)。主成分分析法不基于被度量的根本因素的观点。它是只是一种技术寻找产生解释原始变量的方差的最大量的正交 (独立) 变量的原始变量的线性组合。它通常用于减少变量的个数,同时保留大部分的预测能力。主成分分析的目标是刚性旋转的轴 (其中 n 是变量的数目) n 维空间具有以下属性的一个新的方向:1.第一轴对应方向与变量的大多数差异和随后的坐标轴有差异逐渐较少在他们的方向。2.每一对旋转轴之间的相关性为零。这是正在互相正交的轴的结果 (即,它们是不相关的)。PCA 被通过找到的特征值和特征向量的协方差或相关矩阵。特征向量表示为满足上面列出的标准的旋转坐标从原始变量坐标的线性变换。例如,如果您有通过 Xn 变量 X 1。然后将特征向量组件:
đang được dịch, vui lòng đợi..
Kết quả (Trung) 2:[Sao chép]
Sao chép!

347
身高,体重,腰围尺寸和胸部的大小。相关矩阵为这些变量很可能呈现高中GPA,智商和SAT分数之间的大的正相关关系。同样,身高,体重,腰围和胸围可能会被呈正相关。所以,这个问题是因为一些潜在的,共同的因素是否高中GPA,智商和SAT分数有关。答案当然是肯定的,因为他们是智力的一切措施。同样,身高,体重,腰围和胸围都与物理尺寸。所以结论是,只有两个正在由8个变量测定潜在因素,而这些因素是智能和物理尺寸。这些共同的因素,有时被称为潜变量。因为“智能”是一个抽象的概念,所以不能直接测量:代替,如全球行动,智商等措施来估计个体的智能。
在简单示例上面提出,这不是太困难,以隔离在两组链接变量相关性的图形; 但是,当你有数百个变量和有多个基本因素,它更难以确定与每个因子相关的因素和变量。
因子分析的目的是确定一组解释的关系基本因素之间相关性变量。一般情况下,会有更少的根本因素不是变量,所以因子分析结果比原设定的变量简单。
主成分分析是非常相似因素分析,以及两个程序有时糊涂。这两种方法都建立在相同的数学技术。因子分析假定变量之间的关系(相关性),是由于一组正由变量测量基本因素(潜变量)。
主成分分析的不是基于这样的思想,有正在测定的基本因素。它仅仅是为发现产生正交(不相关)变量解释原始变量方差的最大量原始变量的线性组合的技术。它经常被用于降低变量的数目,同时保持大部分的预测能力。
PCA的目标是刚性地旋转的n维空间(其中n是变量数)的轴线到一个新的取向具有以下性能:
1。第一轴线对应于与所述变量之间的最方差的方向,以及随后的轴在它们的方向逐渐变小方差。
2。每对旋转轴之间的相关性为零。这是作为相互正交的轴的结果(即它们是不相关的)。
PCA通过找到协方差或相关矩阵的特征值和特征向量进行。特征向量表示从原始变量的线性变换坐 ​​标,以满足上面列出的准则旋转坐标。例如,如果您有通过XN变量X1。然后将特征向量分量将是:
đang được dịch, vui lòng đợi..
Kết quả (Trung) 3:[Sao chép]
Sao chép!

347
身高,体重,腰围的大小,和胸部的大小。这些变量的相关系数矩阵可能显示大的正相关关系,高中GPA和SAT成绩,智商之间。同样,身高,体重,腰围与胸围可能呈正相关。所以,问题是,高中GPA,智商,和SAT分数相关的一些潜在的共同因素的原因。答案,当然,是的,因为他们都是情报的措施。同样,身高,体重,腰围与胸围,所有的物理尺寸的关系。因此,只有两个潜在的因素是由于八个变量的测量,以及这些因素是智力和身体的大小。这些共同的因素有时被称为潜变量。由于“智能”是一个抽象概念,它不能被直接测量:相反,如GPA,IQ措施,等。用于估计一个人的智力。
在上述简单的例子,将相关链接变量在两组的模式不太难;但当你有数百个变量和有多个潜在的因素,这是确定的因素和每个因素相关的变量要困难的多。
因子分析的目的是确定一组相关的因素,解释了相关变量之间的关系。一般来说,将会有更少的潜在因素的变量,因此,因子分析结果比变量的原始设置简单。
主成分分析,因子分析非常相似,这两个程序有时会混淆。这两个程序是建立在相同的数学技术。因子分析假设变量之间的关系(相关性)是由一组相关的因素(潜变量)被测量的变量。
主成分分析不是基于这样的思想,有潜在的因素是被测量。这是一个简单的求解原始变量的线性组合,产生正交技术(不相关的)的变量,在原来的变量解释的方差的最大数量。它经常被用来减少变量的数目,同时保留大部分的预测能力。
主成分分析的目标是刚性旋转n维空间轴(其中n是变量个数)到一个新的方向,具有以下特性:
1。第一轴对应于变量之间的最大方差的方向,和随后的轴方向的方差在逐渐减少。
2。每一对旋转轴之间的相关性是零。这是一个结果的轴线相互正交的(即,他们是不相关的)。
PCA进行发现的特征值和特征向量的协方差或相关系数矩阵。特征向量表示原始变量的线性变换的坐标旋转坐标,满足上述条件。例如,如果你有变量X1到Xn。然后将特征向量的分量:
đang được dịch, vui lòng đợi..
 
Các ngôn ngữ khác
Hỗ trợ công cụ dịch thuật: Albania, Amharic, Anh, Armenia, Azerbaijan, Ba Lan, Ba Tư, Bantu, Basque, Belarus, Bengal, Bosnia, Bulgaria, Bồ Đào Nha, Catalan, Cebuano, Chichewa, Corsi, Creole (Haiti), Croatia, Do Thái, Estonia, Filipino, Frisia, Gael Scotland, Galicia, George, Gujarat, Hausa, Hawaii, Hindi, Hmong, Hungary, Hy Lạp, Hà Lan, Hà Lan (Nam Phi), Hàn, Iceland, Igbo, Ireland, Java, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Kurd, Kyrgyz, Latinh, Latvia, Litva, Luxembourg, Lào, Macedonia, Malagasy, Malayalam, Malta, Maori, Marathi, Myanmar, Mã Lai, Mông Cổ, Na Uy, Nepal, Nga, Nhật, Odia (Oriya), Pashto, Pháp, Phát hiện ngôn ngữ, Phần Lan, Punjab, Quốc tế ngữ, Rumani, Samoa, Serbia, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenia, Somali, Sunda, Swahili, Séc, Tajik, Tamil, Tatar, Telugu, Thái, Thổ Nhĩ Kỳ, Thụy Điển, Tiếng Indonesia, Tiếng Ý, Trung, Trung (Phồn thể), Turkmen, Tây Ban Nha, Ukraina, Urdu, Uyghur, Uzbek, Việt, Xứ Wales, Yiddish, Yoruba, Zulu, Đan Mạch, Đức, Ả Rập, dịch ngôn ngữ.

Copyright ©2024 I Love Translation. All reserved.

E-mail: