1-Available online at www.sciencedirect.com
SCII!N CI! @OIRI!CT'
Applied Surface Science 252 (200fi) 48R6---4R96
2- applied
surface science
www.elsevicr.corn/locate/apsusc
3- New PLAD apparatus and fabrication of epitaxial films
and junctions of functional materials: SiC, GaN,
ZnO, diamond and GMR layers
4- Hachizo Muto *, Takeshi Kusumori, Toshiyuki Nakamura,
Takashi Asano, Takahiro Hori
5 - Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST) ChI/1m,
2266-98 Shimo-Shidami, Moriyama-ku, Nagoya 463-8560, Japan
Received 3 May 2005; accepted IS July 2005
Available online 24 October 2005
6 - Abstract
7 -We have developed a new pulsed laser ablation-cleposition (PLAD) apparatus and techniques for fabricating films of high-temperature or functional materials
8- including two short-wavelength lasers: (a) a YAG 5th harmonic (213 nm) and (b) Raman-shifted lasers containing vacuum ultraviolet light
9- also involved are (c) a high-temperature heater with a maximum temperature of 1350 "C, (d) dual-target simultaneous ablation mechanics, and (e) hybrid PLAD using a pi co-second YAG laser combined with (c) and/or (e1).
10- Using the high-Theater, hetero-epitaxial films of 3C-, 2H- and 4H-SiC have been prepared on sapphire-c. In situ p-doping for GaN epitaxial films is achieved by simultaneous ablation of GaN and
Mg targets by (d) during film growth
11- Junctions such as pGaN (Mg-dopedj-filrn/n-Si'Clf 0 01) substrate and pGaN/n-Si(l 1 I) show good diode characteristics.
đang được dịch, vui lòng đợi..
